• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Li WU, Dejiang LIU. Ecological Security Evaluation of the Cultivated Land in Yuxi Based on GA-BP Neural Network[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(5): 874-883. DOI: 10.12101/j.issn.1004-390X(n).201805041
Citation: Li WU, Dejiang LIU. Ecological Security Evaluation of the Cultivated Land in Yuxi Based on GA-BP Neural Network[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(5): 874-883. DOI: 10.12101/j.issn.1004-390X(n).201805041

Ecological Security Evaluation of the Cultivated Land in Yuxi Based on GA-BP Neural Network

More Information
  • Received Date: May 26, 2018
  • Revised Date: May 22, 2019
  • Available Online: October 09, 2019
  • Published Date: August 31, 2019
  • PurposeTo resolve the limitations which occurred in land ecological security evaluation, such as slow convergence rate and getting into local minimum, genetic algorithm (GA) had been imported to improve BP neural network.
    MethodAn evaluation index system composed of ecological pressure and ecological support, two sub-systems and 18 indices, had been built up according to cultivated land status in Yuxi City. Improved BP neural network based on GA was established to be applied in ecological security evaluation of cultivated land from 2001 to 2015. Simultaneously, BP neural network and GA-BP neural network had been compared in their performance and errors and both were compared with comprehensive index method by the three assessment results.
    Results1) Evaluation results showed that ecological security index declined steadily from 0.772 7 in 2001 to 0.280 2 in 2015 and the security grade fell from safer (II) to unsafe (IV); 2) Compared with the traditional BP neural network, GA-BP neural network had the advantages that included small errors in training and prediction, fast convergence and higher accuracy in assessment results.
    ConclusionsGA-BP neural network can be applied to evaluate the ecological safety of cultivated land and had great value in application for the improvement of network performance.
  • [1]
    唐秀美, 陈百明, 路庆斌, 等. 基于生态适宜性评价的耕地生态系统服务价值变化研究—以山东省章丘市为例[J]. 中国农业资源与区划, 2011, 32(6): 39.
    [2]
    杨俊, 宋振江, 李争. 基于PSR模型的耕地生态安全评价—以长江中下游粮食主产区为例[J]. 水土保持研究, 2017, 24(3): 301. DOI: 10.13869/j.cnki.rswc.2017.03.052.
    [3]
    任平, 洪步庭, 周介铭. 长江上游农业主产区耕地生态安全评价与空间特征研究[J]. 中国人口•资源与环境, 2013, 23(12): 65. DOI: 10.3969/j.issn.1002-2104.2013.12.010.
    [4]
    FISCHER, GUNTHER. Modeling land use and land cover change in Europe and Northern Asia[J]. Simulation, 1995, 64: 70.
    [5]
    YU G M, ZHANG S, YU Q W, et al. Assessing ecological security at the watershed scale based on RS/GIS: a case study from the Hanjiang River Basin[J]. Stochastic Environmental Research and Risk Assessment, 2013, 28(2): 307. DOI: 10.1007/s00477-013-0750-x.
    [6]
    CHERRY W A. Comments: what is ecological security?[J]. Peach Research, 1995, 27(2): 87.
    [7]
    WACHERNAGEL M, LEWAN L, HANSSON C. 利用生态痕迹评价自然资本的利用—在瑞典及亚区的应用[J]. 闵庆文, 译. Ambio, 1999, 28(7): 604.
    [8]
    ZHAO Y Z, ZOU X Y, CHENG H, et al. Assessing the ecological security of the Tibetan Plateau: methodology and a case study for Lhaze County[J]. Journal of Environmental Management, 2006, 80(2): 120. DOI: 10.1016/j.jenvman.2005.08.019.
    [9]
    GAO J X, ZHANG X H, JIANG Y, et al. Key issues on watershed ecological security[J]. Chinese Science Bulletin, 2007, 52(S2): 251. DOI: 10.1007/s11434-007-7014-4.
    [10]
    黄鹏, 赖雪梅, 黄丽芸. 广州市耕地生态安全动态评价[J]. 广东农业科学, 2011(12): 210. DOI: 10. 16768/j. issn. 1004-874x. 2011. 12. 018.
    [11]
    朱红波. 我国耕地资源生态安全的特征与影响因素分析[J]. 农业现代化研究, 2008, 29(2): 194. DOI: 10.3969/j.issn.1000-0275.2008.02.016.
    [12]
    施开放, 刁承泰, 孙秀锋, 等. 基于改进SPA法的耕地占补平衡生态安全评价[J]. 生态学报, 2013, 33(4): 1317. DOI: 10. 5846/stxb201207150996.
    [13]
    郭荣中, 杨敏华, 申海建. 长株潭地区耕地生态安全评价研究[J]. 农业机械学报, 2016, 47(10): 193. DOI: 10.6041/j.issn.1000-1298.2016.10.025.
    [14]
    FENG Y X, LUO G P, HAN Q F, et al. Evaluation of land use change degree and ecological security in the Manas River Basin, Xinjiang, China[J]. Russian Journal of Ecology, 2014, 45(1): 46. DOI: 10.1134/s1067413614010068.
    [15]
    LI Y F, SUN X, ZHU X D, et al. An early warning method of landscape ecological security in rapid urbanizing coastal areas and its application in Xiamen, China[J]. Ecological Modelling, 2010, 221(19): 2251. DOI: 10.1016/j.ecolmodel.2010.04.016.
    [16]
    李明月, 赖笑娟. 基于BP神经网络方法的城市土地生态安全评价—以广州市为例[J]. 经济地理, 2011, 31(2): 289. DOI: 10. 15957/j. cnki. jjd1. 2011. 02. 006.
    [17]
    MAO X Y, MENG J J, XIANG Y Y. Cellular automata-based model for developing land use ecological security patterns in semi-arid areas: a case study of Ordos, Inner Mongolia, China[J]. Environmental Earth Sciences, 2013, 70(1): 269. DOI: 10.1007/s12665-012-2125-x.
    [18]
    张锐, 郑华伟, 刘友兆. 基于PSR模型的耕地生态安全物元分析评价[J]. 生态学报, 2013, 33(16): 5090. DOI: 10. 5846/stxb201209191319.
    [19]
    刘小波, 秦天彬, 周宝同, 等. 基于改进SPA的乐山市耕地生态安全评价[J]. 西南师范大学学报(自然科学版), 2016, 41(3): 147. DOI: 10.13718/j.cnki.xsxb.2016.03.026.
    [20]
    侯玉乐, 李钢, 渠俊峰, 等. 基于改进灰靶模型的土地生态安全评价—以江苏省徐州市为例[J]. 水土保持研究, 2017, 24(1): 285. DOI: 10.13869/j.cnki.rswc.20160918.004.
    [21]
    龚巧灵, 官冬杰. 基于BP神经网络的三峡库区重庆段水资源安全评价[J]. 水土保持研究, 2017, 24(6): 292. DOI: 10.13869/j.cnki.rswc.2017.06.044.
    [22]
    李小刚, 马友华, 张益, 等. 基于模糊评价与BP神经网络模型的耕地质量评价对比研究—以淮北平原凤台县为例[J]. 土壤通报, 2015, 46(4): 816. DOI: 10.19336/j.cnki.trtb.2015.04.008.
    [23]
    许永, 李超, 杨乾栩, 等. 基于BP神经网络建立初烤烟叶主流烟气中氢氰酸释放量的预测模型[J]. 云南农业大学学报(自然科学), 2018, 33(1): 72. DOI: 10.12101/j.issn.1004-390X(n).201701028.
    [24]
    FATTAHI H, BAZDAR H. Applying improved artificial neural network models to evaluate drilling rate index[J]. Tunnelling and Underground Space Technology, 2017, 70: 114. DOI: 10.1016/j.tust.2017.07.017.
    [25]
    王泽平. 基于GA-BP与多隐层BP网络模型的水质预测及比较分析[J]. 水资源与水工程学报, 2013, 24(3): 154.
    [26]
    陈英义, 程倩倩, 成艳君, 等. 基于GA-BP神经网络的池塘养殖水温短期预测系统[J]. 农业机械学报, 2017, 48(8): 172. DOI: 10.6041/j.issn.1000-1298.2017.08.019.
    [27]
    李卫红, 闻磊, 陈业滨. 改进的GA-BP神经网络模型在财产犯罪预测中的应用[J]. 武汉大学学报(信息科学版), 2017, 42(8): 1110. DOI: 10.13203/j.whugis20160911.
    [28]
    钱海滨, 薛永森, 田彦军. 土地资源合理利用评价研究综述[J]. 中国土地科学, 2001, 15(2): 14. DOI: 10.13708/j.cnki.cn11-2640.2001.02.004.
    [29]
    于海洋, 张飞, 曹雷, 等. 基于乡镇尺度的土地生态安全时空格局评价研究—以博尔塔拉蒙古自治州为例[J]. 生态学报, 2017, 37(19): 6355. DOI: 10. 5846/stxb201607081406.
    [30]
    冯彦, 郑洁, 祝凌云, 等. 基于PSR模型的湖北省县域森林生态安全评价及时空演变[J]. 经济地理, 2017, 37(2): 171. DOI: 10.15957/j.cnki.jjdl.2017.02.023.
    [31]
    崔明哲, 杨凤海, 李佳. 基于组合赋权法的哈尔滨市耕地生态安全评价[J]. 水土保持研究, 2012, 19(6): 184.
    [32]
    MCCLELLAN J L, RUMELHART D E. Neural network programs: explorations in parallel distributed processing[J]. Science, 1988, 241(4869): 1107. DOI: 10.1126/science.241.4869.1107.
    [33]
    ZHANG L P, WU K, ZHONG Y F, et al. A new sub-pixel mapping algorithm based on a BP neural network with an observation model[J]. Neurocomputing, 2008, 71(10/11/12): 2046. DOI: 10.1016/j.neucom.2007.08.033.
    [34]
    WANG H N, LAI J B, LIU X N. A quantitative forecast method of network security situation basedon BP neural network with genetic algorithm[C]// International Multi-Symposiums on Computer and Computational Sciences. Lowa City America, IEEE Computer Society, 2007: 374.
    [35]
    SUN Y J, SHEN Z, MIAO C X, et al. Improved BP neural network for transformer fault diagnosis[J]. Journal of China University of Mining & Technology, 2007, 17(1): 138.
    [36]
    ZHANG Z D, NI Z W, JIANG Y, et al. Improving central air conditioning energy saving control system through BP neural network and genetic algorithm[C]// International Conference on Computer Application and System Modeling. Taiyuan, China, IEEE. 2010: 643.
  • Related Articles

    [1]Jianbin GUO, Ying ZHANG, Zhiwei ZHANG, Lei HOU, Weilian ZENG. Study of Land Use Intensity Change and Its Spatial Heterogeneity of Nyingchi City in Tibet[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 511-519. DOI: 10.12101/j.issn.1004-390X(n).202209064
    [2]Tian BAI, Xinyu WANG, Yawen WU, Junming YANG, Linlin ZHENG, Ruizhen HE, Guohang TIAN. Study of Temporal and Spatial Evolution Characteristics of Ecological Sensitivity in Luohe District Based on GIS and FLUS[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(4): 710-719. DOI: 10.12101/j.issn.1004-390X(n).202201012
    [3]Zihong CHEN, Yaguan ZHANG, Ling XU, Qingcheng HE. Virulence of Beauveria to Spodoptera frugiperda in Western Yunnan and Its Dynamics in Fields[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(1): 69-74. DOI: 10.12101/j.issn.1004-390X(n).202106003
    [4]Jizhou YANG, Xinqiao XIE, Anqi ZHU, Xiangwei LI, Lihua LUO, Kunlan ZHANG, Jiazhi LI, Yuanshu JING. Study on the Method of Climate Suitability Analysis for Flue-cured Tobacco in Yuxi[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(5): 832-840. DOI: 10.12101/j.issn.1004-390X(n).202010015
    [5]Dongmei LU, Cuiping ZHANG, Yufen WANG, Xianbin LIU, Shuying LI, Jiliang WEN, Chunrong ZHU, Yuanqing ZHOU. Health Risk Assessment for Drinking Water Source of the Feijinghai Reservoir in Hongta District of Yuxi City[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(2): 345-352. DOI: 10.12101/j.issn.1004-390X(n).201905034
    [6]Dongmei LU, Xue LI, Jifen LI, Jiliang WEN, Shuying LI, Chunrong ZHU, Yuanqing ZHOU, Cuiping ZHANG. Heavy Metal Pollution Characteristics and Ecological Risk Analysis for Soil in Tea Core Plantations of Xinping County[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(6): 1154-1162. DOI: 10.12101/j.issn.1004-390X(n).201804037
    [7]Yong XU, Chao LI, Qianxu YANG, Yunhua QIN, Wei LIU, Yiqin WU, Mingming MIAO, Tao ZHANG. Establishment of Predicting Model of Hydrogen Cyanide Contents in Flue-cured Tobacco Mainstream Smoke Based on BP Neural Network[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(1): 72-78. DOI: 10.12101/j.issn.1004-390X(n).201701028
    [8]YAN Xueqiang, YANG Shuoyuan, LI Yanqiong, LU Xingxing, ZHANG Hongrui. Thrips Species and Distribution on Vegetables in Yuxi City[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(5): 952-957. DOI: 10.16211/j.issn.1004-390X(n).2017.05.028
    [9]HE Banghua, LUO Jing, LIU Ze, TANG Jun, ZHU Yong, HE Zushun, HUANG Wenchang. Physical Quality of Tobacco Production and Primary Processing Neural Network Model and Its Evaluation[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(5): 874-879. DOI: 10.16211/j.issn.1004-390X(n).2016.05.016
    [10]LI Ling, ZHANG Yu, LIAN Yanxue, LIN Quanying. Pollution and Assessment of Heavy Metals in Roadside Pavement Sediment of Wuyishan City[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2015, 30(6): 916-923. DOI: 10.16211/j.issn.1004-390X(n).2015.06.014
  • Cited by

    Periodical cited type(16)

    1. 曹蕾,刘玲艳,王怀军,黄玉叶,李影慧. 基于GIS的淮河生态经济带生态安全综合评价. 江苏师范大学学报(自然科学版). 2025(01): 9-16 .
    2. 杜园园,刘士鑫,谭美仙,向冬蕾,陈运春. 玉溪市生态系统服务功能重要性评价及机理. 湖北农业科学. 2024(02): 170-177+188 .
    3. 嵇晶晶,佘冬立,阿力木·阿布来提,潘永春. 盐渍化农田排水沟水体溶存N_2O浓度预测. 中国环境科学. 2024(10): 5839-5846 .
    4. 丁艳喜,张云龙,吴佩佩,罗晓虎,李言言,孟庆香. 中国耕地集约利用度驱动因素研究. 河南科学. 2024(11): 1681-1690 .
    5. 曲子良. 丹东市水资源开发利用程度评价. 黑龙江水利科技. 2023(06): 81-84 .
    6. 韩丽红,潘玉君,高敏,黄欢. 贵州耕地生态安全评价及障碍因子分析. 西南林业大学学报(社会科学). 2023(06): 68-73 .
    7. 刘立志,韩震. 基于遥感生态指数的上海市城市生态质量评价及驱动力研究. 四川林业科技. 2023(06): 48-54 .
    8. 周浩,胡凌,陈竹书. 基于量子遗传投影寻踪的长株潭地区耕地系统安全评价. 农业机械学报. 2022(08): 268-274+302 .
    9. 汪洋. 基于PSR模型的吴起县耕地生态安全评价. 农业与技术. 2022(18): 102-107 .
    10. 任斌裕,张清,周晓桢. 基于数据挖掘模型的耕地质量评价研究. 江西科学. 2022(06): 1091-1095 .
    11. 徐钰德,刘子金,黄嵩,李智睿,赵志宏. 干旱区人工绿洲水土环境生态安全演变分析. 水利水电技术(中英文). 2021(01): 105-115 .
    12. 叶辉,王金亮,赵娟娟. 基于DPSIR-EES模型的北回归线(云南段)生态安全评价. 水土保持研究. 2021(03): 291-298 .
    13. 王慧,张建丰,高泽海,李涛. BP神经网络在农业水土研究中的应用. 现代农业科技. 2021(08): 134-139 .
    14. 高磊,鲍学英,李爱春. 基于DSR-云模型的高地温隧道施工安全评价. 现代隧道技术. 2021(03): 43-51+78 .
    15. 刘洋. 基于BP神经网络的辽宁省水资源开发利用程度评价研究. 人民珠江. 2021(09): 86-90 .
    16. 唐宗,周悟,杨颢,谢晓瑜,胡月明. 基于交互效应Logistic回归模型的耕地质量评价方法研究. 生态环境学报. 2020(12): 2394-2403 .

    Other cited types(17)

Catalog

    Article views (2374) PDF downloads (16) Cited by(33)