• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Jianbin GUO, Ying ZHANG, Zhiwei ZHANG, et al. Study of Land Use Intensity Change and Its Spatial Heterogeneity of Nyingchi City in Tibet[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 511-519. DOI: 10.12101/j.issn.1004-390X(n).202209064
Citation: Jianbin GUO, Ying ZHANG, Zhiwei ZHANG, et al. Study of Land Use Intensity Change and Its Spatial Heterogeneity of Nyingchi City in Tibet[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 511-519. DOI: 10.12101/j.issn.1004-390X(n).202209064

Study of Land Use Intensity Change and Its Spatial Heterogeneity of Nyingchi City in Tibet

More Information
  • Received Date: October 03, 2022
  • Revised Date: May 10, 2023
  • Accepted Date: May 10, 2023
  • Available Online: May 14, 2023
  • Published Date: May 29, 2023
  • PurposeTo reveal the spatial heterogeneity characteristics of land use intensity of alpine gorge in Tibetan Plateau, providing a theoretical basis for local territorial spatial planning.
    MethodBased on the Landsat satellite images in 2010 and 2020, the data of land use in 30 meters grid were obtained, and the spatial heterogeneity characteristics of land use intensity and its change in Nyingchi were analyzed by spatial autocorrelation analysis method.
    ResultsThe grid units of stronger and strongest level of land use intensity were mainly distributed in the low altitude areas and the wide valleys of the Yarlung Tsangpo River and the Nyang River, the grid units of weakest and weaker level of land use intensity were mainly distributed in the high altitude area. From 2010 to 2020, the increased area of strongest level came from the reduced area of middle and stronger level of land use intensity. The land use intensity in Nyingchi had relatively strong positive global spatial autocorrelation with Moran’s , had obvious spatial aggregation law. The graph of local autocorrelation analysis showed that land use intensity low-low typology was in the northeast and northwest in Nyingchi, high-high typology was in the low altitude areas and the wide valleys of the Yarlung Tsangpo River and the Nyang River. The land use intensity change also had positive global spatial autocorrelation in Nyingchi from 2010 to 2020, high-high typology was in the wide valleys of the Nyang River, other densely inhabited districts and low altitude areas, but the low-high typology distributed around the high-high typology areas.
    ConclusionThe land use intensity gradually strengthens, the land use intensity and its changes in Nyingchi is not disorderly, the regions with high land use change are adjacent to each other, and the regions with low land use change are adjacent to each other.
  • [1]
    Global Land Project. Science plan and implementation strategy[R]. Stockholm: International Geosphere-Biosphere Program Secretariat, 2005.
    [2]
    匡文慧, 张树文, 杜国明, 等. 2015—2020年中国土地利用变化的时空遥感制图及时空特征分析[J]. 地理学报, 2022, 77(5): 1056. DOI: 10.11821/dlxb202205002.
    [3]
    杨丽萍, 张静, 贡恩军, 等. GEE 联合多源数据的西安市土地利用时空格局及驱动力分析[J]. 农业工程学报, 2022, 38(2): 279. DOI: 10.11975/j.issn.1002-6819.2022.02.031.
    [4]
    吴婷婷, 刘学录. 甘肃省庄浪县土地利用结构动态变化研究[J]. 云南农业大学学报(自然科学), 2015, 30(1): 112. DOI: 10.16211/j.issn.1004-390X(n).2015.01.019.
    [5]
    HUANG X, HUANG X J, LIU M M, et al. Spatial-temporal dynamics and driving forces of land development intensity in the western China from 2000 to 2015[J]. Chinese Geographical Science, 2020, 30(1): 16. DOI: 10.1007/s11769-020-1095-2.
    [6]
    ERB K H, HABERL H, JEPSEN M R, et al. A conceptual framework for analysing and measuring land-use intensity[J]. Current Opinion in Environmental Sustainability, 2013, 5(5): 464. DOI: 10.1016/j.cosust.2013.07.010.
    [7]
    曹瑞芬, 蔡银莺. 基于AHP的土地开发利用程度评价及分析: 以武汉市为例[J]. 华中农业大学学报(社会科学版), 2011(1): 65. DOI: 10.13300/j.cnki.hnwkxb.2011.01.020.
    [8]
    梁明, 聂拼, 陆胤昊, 等. 淮南市土地利用程度变化过程的时空演化特征[J]. 农业工程学报, 2019, 35(22): 99. DOI: 10.11975/j.issn.1002-6819.2019.22.011.
    [9]
    吴金华, 李纪伟, 梁晶晶. 土地利用程度与效益关系研究: 以延安市为例[J]. 中国土地科学, 2011, 25(8): 54. DOI: 10.13708/j.cnki.cn11-2640.2011.08.010.
    [10]
    楚玉山, 刘纪远. 西藏土地利用[M]. 北京: 科学出版社, 1992.
    [11]
    黄木易, 何翔, 吴迪, 等. 巢湖流域土地利用程度变化及其空间异质性分析[J]. 土壤, 2015, 47(5): 994. DOI: 10.13758/j.cnki.tr.2015.05.029.
    [12]
    张颖, 赵宇鸾. 黔桂岩溶山区土地利用程度演变的空间分异特征[J]. 水土保持研究, 2018, 25(1): 287. DOI: 10.13869/j.cnki.rswc.20171225.001.
    [13]
    于明雪, 孙建国, 杨维涛, 等. 基于贝叶斯层次时空模型的甘肃省土地利用程度演变分析[J]. 地理科学, 2022, 42(5): 918. DOI: 10.13249/j.cnki.sgs.2022.05.017.
    [14]
    吴琳娜, 杨胜天, 刘晓燕, 等. 1976年以来北洛河流域土地利用变化对人类活动程度的响应[J]. 地理学报, 2014, 69(1): 54. DOI: 10.11821/dlxb201401005.
    [15]
    黄华富, 戴文远, 苏木兰. 海岛生态脆弱区土地利用程度空间格局演化: 以福建省海坛岛为例[J]. 福建师范大学学报(自然科学版), 2016, 32(2): 92.
    [16]
    HUANG W, WANG M Y, CHEN X Y. Analysis on spatial pattern evolution of cultivated land in urban area based on spatial autocorrelation analysis: a case study of Luoyang City[M]//SUN X M, ZHANG X R, XIA Z H, et al. Artificial intelligence and security: part 1. Dublin: Springer, 2021.
    [17]
    WANG H, ZHU Y X, WANG M Y, et, al. Research of spatial pattern for cultivated land quality in Henan Province based on spatial autocorrelation[M]//SUN X M, ZHANG X R, XIA Z H, et al. Artificial intelligence and security: part 1. Dublin: Springer, 2021.
    [18]
    罗芳, 潘安, 陈忠升, 等. 四川省土地利用变化对生态系统服务价值的影响研究[J]. 云南农业大学学报(自然科学), 2021, 36(4): 734. DOI: 10.12101/j.issn.1004-390X(n).202010031.
    [19]
    肖建英, 谭术魁. 中国粮食产量省级尺度下的空间分异规律[J]. 中国土地科学, 2013, 27(8): 26. DOI: 10.13708/j.cnki.cn11-2640.2013.08.008.
    [20]
    张松林, 张昆. 全局空间自相关Moran指数和G系数对比研究[J]. 中山大学学报(自然科学版), 2007, 46(4): 93. DOI: 10.3321/j.issn:0529-6579.2007.04.021.
    [21]
    曹冯, 陈松林. 县域土地利用程度及其空间自相关探析: 以福建省德化县为例[J]. 福建师范大学学报(自然科学版), 2014, 30(3): 119.
    [22]
    鱼坤, 陈学渊, 韩晓静, 等. 西北旱区土地利用变化的时空异质性研究: 以陕西铜川耀州区为例[J]. 西北农林科技大学学报(自然科学版), 2022, 50(9): 1. DOI: 10.13207/j.cnki.jnwafu.2022.09.011.
    [23]
    杨玉婷, 石培基, 潘竟虎. 干旱内陆河流域土地利用程度差异分析: 以张掖市甘州区为例[J]. 干旱区资源与环境, 2012, 26(2): 102. DOI: 10.13448/j.cnki.jalre.2012.02.013.
    [24]
    冯异星, 罗格平, 尹昌应, 等. 干旱区内陆河流域土地利用程度变化与生态安全评价: 以新疆玛纳斯河流域为例[J]. 自然资源学报, 2009, 24(11): 1921. DOI: 10.3321/j.issn:1000-3037.2009.11.007.
    [25]
    冯舒芮, 黄琦, 杨京彪, 等. 三江源地区土地利用程度的时空变化分析[J]. 中央民族大学学报(自然科学版), 2020, 29(3): 21. DOI: 10.3969/j.issn.1005-8036.2020.03.004.
    [26]
    林芝市地方志办公室. 林芝年鉴(2019)[M]. 拉萨: 西藏人民出版社, 2020.
    [27]
    林振耀, 吴样定. 青藏高原气候区划[J]. 地理学报, 1981, 36(1): 22. DOI: 10.3321/j.issn:0375-5444.1981.01.003.
    [28]
    林芝市统计局. 2020年林芝市国民经济和社会发展统计公报[EB/OL]. (2021-04-08)[2022-09-28]. http://www.linzhi.gov.cn/tjj/c103534/202105/73039b332f1045a6a50eecc141f64c80.shtml.
    [29]
    庄大方, 刘纪远. 中国土地利用程度的区域分异模型研究[J]. 自然资源学报, 1997, 12(2): 105. DOI: 10.3321/j.issn:1000-3037.1997.02.002.
    [30]
    邵俊明, 周宝同, 徐中强, 等. 基于Moran’s Ⅰ和Kriging插值在不同采样尺度下的土地利用程度分析: 以重庆市石柱县为例[J]. 四川农业大学学报, 2015, 33(2): 215. DOI: 10.16036/j.issn.1000-2650.2015.02.015.
    [31]
    王劲峰, 廖一兰, 刘鑫. 空间数据分析教程[M]. 2版. 北京: 科学出版社, 2019.
    [32]
    鲁安新, 姚檀栋, 王丽红, 等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土, 2005, 27(6): 783. DOI: 10.3969/j.issn.1000-0240.2005.06.001.
    [33]
    龙笛, 李雪莹, 李兴东, 等. 遥感反演2000—2020年青藏高原水储量变化及其驱动机制[J]. 水科学进展, 2022, 33(3): 375. DOI: 10.14042/j.cnki.32.1309.2022.03.003.
  • Cited by

    Periodical cited type(4)

    1. 李浩楠,窦蒙召,郭健斌. 林芝市代耕农空间分布的驱动机制研究. 农业与技术. 2024(16): 156-161 .
    2. 沈盈佳,李灿松,葛旭瑞,黄宇,刘宇斯,钱镜帆. 澜沧江—湄公河跨境流域土地利用变化及生态环境质量演变. 云南农业大学学报(自然科学). 2024(05): 178-190 .
    3. 宋玉林,杨泽凡,余敖,李浩. 广州增城区县域尺度的森林生物量碳储量估算及空间分布特征. 陆地生态系统与保护学报. 2024(04): 10-19 .
    4. 李国庆,赵洪升,张浩东. 淮北市林地景观格局特征与优化研究. 绿色科技. 2023(19): 96-100 .

    Other cited types(3)

Catalog

    Article views (1525) PDF downloads (23) Cited by(7)