• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Yong XU, Chao LI, Qianxu YANG, et al. Establishment of Predicting Model of Hydrogen Cyanide Contents in Flue-cured Tobacco Mainstream Smoke Based on BP Neural Network[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(1): 72-78. DOI: 10.12101/j.issn.1004-390X(n).201701028
Citation: Yong XU, Chao LI, Qianxu YANG, et al. Establishment of Predicting Model of Hydrogen Cyanide Contents in Flue-cured Tobacco Mainstream Smoke Based on BP Neural Network[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(1): 72-78. DOI: 10.12101/j.issn.1004-390X(n).201701028

Establishment of Predicting Model of Hydrogen Cyanide Contents in Flue-cured Tobacco Mainstream Smoke Based on BP Neural Network

More Information
  • Received Date: January 19, 2017
  • Revised Date: August 13, 2017
  • Available Online: March 01, 2018
  • Published Date: December 31, 2017
  • Purpose This study aimed to grasp the release of hydrogen cyanide in flue gas of mainstream tobacco and provide guidance for the adjustment of cigarette formula, finally reduce the harmfulness of cigarettes.
    Method The hydrogen cyanide (HCN) in mainstream smoke and the contents of 25 chemical components in 182 samples of cured tobacco leaves were determined. The BP neural network was applied to build the model of forecasting the HCN in mainstream smoke. The general chemical components-cut tobacco moisture, chlorine, malonic acid, volatile acid, potassium and total nitrogen were as the inputs of the network and the HCN wais as the outputs.
    Results The model was external validated by 28 samples, the average relative prediction error of HCN was 7.88%, and the relative prediction error of most samples within 10%.
    Conclusions This model had good prediction accuracy; it could be used to flue-cured tobacco widely.
  • [1]
    刘立全, 周雅宁, 龚安达, 等.烟草工业减害研究进展[J]. 烟草科技, 2011 (2): 25. DOI: 10.3969/j.issn.1002-0861.2011.02.007.
    [2]
    OHNSON W R, KANG J C. Mechanism of hydrogen cyanide formation from the pyrolysis of amino acids and related compounds[J]. Journal of Organic Chemistry, 1971, 36 (1): 189.
    [3]
    OOTAKE M. Preparation of prussic acid: JP59227718 [P]. 1984-12-21.
    [4]
    杜兴旗.氰化物的毒性及其解毒方法[J]. 渭南师范学院学报, 2005, 20(14): 55. DOI: 10.3969/j.issn.1009-5128.2005.z2.026.
    [5]
    Tobacco Control Programme Health Canada Backgrounder on Constituents and Emissions Reported for Cigarettes Sold in Canada-2004[EB/OL]. (2008-06-13)[2017-01-20]. http://www.hc-sc.gc.ca/hl-vs/tobac-tobac/legisla-tion/reg/indust/index-f.h.
    [6]
    谢剑平, 刘惠民, 朱茂祥, 等.卷烟烟气危害性指数研究[J]. 烟草科技, 2009(2): 5. DOI: 10.3969/j.issn.1002-0861.2009.02.001.
    [7]
    湖南中烟工业有限责任公司. 卷烟主流烟气中氰化氢的测定: 连续流动法: YC/T 253—2008[S]. 北京: 中国标准出版社, 2008.
    [8]
    张强, 王浩雅, 马剑雄, 等.云南烤烟的烟气成分与烟叶化学成分的相关分析[J]. 中国烟草科学, 2011, 32 (1): 75. DOI: 10.3969/j.issn.1007-5119.2011.01.017.
    [9]
    汪修奇, 邓小华, 李晓忠, 等.湖南烤烟化学成分与焦油的相关、通径及回归分析[J]. 作物杂志, 2010(2): 32. DOI: 10.3969/j.issn.1001-7283.2010.02.008.
    [10]
    历昌坤, 周显升, 王允白, 等.烤烟烟叶焦油释放量与部分化学成分的关系研究[J]. 中国烟草科学, 2004(2): 25. DOI: 10.3969/j.issn.1007-5119.2004.02.008.
    [11]
    李国栋, 于建军, 董顺德, 等.河南烤烟化学成分与烟气成分的相关分析[J]. 烟草科技, 2004(2): 25. DOI: 10.3969/j.issn.1002-0861.2001.08.011.
    [12]
    黄朝章, 蔡国华, 赵艺强, 等.单料烟主流烟气HCN与烟叶常规化学成分的相关性[J]. 烟草科技, 2013 (2): 46. DOI: 10.3969/j.issn.1002-0861.2013.02.014.
    [13]
    颜克亮, 周博, 朱东来, 等.烟叶常规化学成分与7项有害成分释放量的相关性分析[J]. 西南农业学报, 2015, 28 (3): 1306. DOI: 10.16213/j.cnki.scjas.2015.03.072.
    [14]
    李振华, 佘世科, 郭东锋, 等.烤烟常规化学成分与氢氰酸关系研究[J]. 河南农业科学, 2016, 45(4): 58. DOI: 10.15933/j.cnki.1004-3268.2016.04.013.
    [15]
    朱大恒, 李彩霞, 张爱忠, 等.烟气有害成分与烟叶化学成分的关系[J]. 烟草科技, 2009(9): 53.
    [16]
    国家烟草质量监督检验中心.烟草及烟草制品总植物碱的测定光度法: GB/T 23225—2008[S].北京: 中国标准出版社, 2008.
    [17]
    国家烟草质量监督检测中心. 烟草及烟草制品总挥发碱的测定: YC/T 35—1996 [S]. 北京: 中国标准出版社, 1997.
    [18]
    国家烟草质量监督检测中心. 烟草及烟草制品试样的制备和水分测定烘箱法: YC/T 31—1996[S]. 北京: 中国标准出版社, 1996: 427.
    [19]
    国家烟草质量监督检测中心. 烟草和烟草制品总蛋白质含量的测定: YC/T 166—2003 [S]. 北京: 中国标准出版社, 2003.
    [20]
    中国烟草总公司郑州烟草研究院, 中国烟草标准化研究中心. 烟草及烟草制品多酚化合物—绿原酸、莨菪亭和芸香苷的测定: YC/T 202—2006 [S]. 北京: 中国标准出版社, 2006.
    [21]
    施红林, 李忠, 杨光宇, 等.水蒸气蒸馏返滴定法测定烟草及其制品中总挥发有机酸[J]. 理化检验: 化学分册, 2004, 40(2): 53. DOI: 10.3321/j.issn:1001-4020.2004.02.022.
    [22]
    张槐苓.烟草分析与检验[M].郑州: 河南科学技术出版社, 1994: 103.
    [23]
    蒋次清, 胡守毅, 李忠, 等.微波辅助衍生化-气相色谱法测定烟草中非挥发性有机酸[J]. 理化检验: 化学分册, 2011, 47(4): 392.
    [24]
    YANG Q X, WANG M, XIAO H B, et al. Feature selection using a combination of genetic algorithm and selection frequency curve analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 148: 106.
    [25]
    YANG L, YANG Q X, YANG S H, et al. Application of near infrared spectroscopy to detect mould contamination in tobacco[J]. Journal of Near Infrared Spectroscopy, 2016, 23(6): 391-400. DOI: 10.1255/jnirs.1190.
    [26]
    李超, 张承明, 李颖, 等. 烟丝结构对主流烟气中NNK逐口释放量的影响[J]. 云南农业大学学报(自然科学), 2016, 31(4): 700-706. DOI: 10.16211/j.issn.1004-390X(n). 2016.04.018
    [27]
    张健, 李超, 陶鹰, 等. 离子色谱研究深度抽吸模式下卷烟主流烟气中氨的逐口释放量[J]. 云南农业大学学报(自然科学), 2016, 31(05): 856-861. DOI: 10.16211/j.issn.1004-390X(n).2016.05.013.
    [28]
    肖祖菊. 含氰化工废渣的毒性研究及健康风险评价[D]. 重庆: 重庆大学, 2010.
    [29]
    李超, 张健, 姜黎, 等. 卷烟主流烟气中6种化学成分的逐口释放量分析[J]. 烟草科技, 2015, 48(3): 39-46. DOI: 10.16135/j.issn1002-0861.20150308.
  • Cited by

    Periodical cited type(3)

    1. 吴宏,孔泽栋,王若方,马松. 基于PCA-BP神经网络的烟叶含水率预测研究. 安徽农业科学. 2024(14): 219-222+241 .
    2. 张崇崇,黄亚宇. GA-BP神经网络对片烟结构的预测研究. 电子科技. 2022(06): 35-42 .
    3. 吴利,柳德江. 基于GA-BP神经网络的玉溪市耕地生态安全评价. 云南农业大学学报(自然科学). 2019(05): 874-883 .

    Other cited types(0)

Catalog

    Article views (2682) PDF downloads (31) Cited by(3)