Citation: | PU Zhiyu, YANG Yuju, ZHANG Anmian, et al. Expression and Stability Analysis of Seven Candidate Reference Genes in Different Tissues of Vaccinium dunalianum Wight[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(5): 868-877. DOI: 10.12101/j.issn.1004-390X(n).202208036 |
To select appropriate reference genes for gene expression analysis in different tissues of Vaccinium dunalianum Wight.
Based on the transcriptome sequencing data of the third generation, seven candidate reference genes (PP2A-1, PP2A-2, EIF-4A-1, EIF-4A-2, 60S-1, 60S-2 and ARP-1) were selected. The expression level of candidate reference genes was detected by qRT-PCR in eight different tissues of V. dunalianum (tender leaves, mature leaves, flower buds, flowers, green fruits, red fruits, green fruit stems and red fruit stems). Firstly, geNorm, NormFinder and BestKeeper methods were used to analyze and evaluate the stability of gene expression, and then RefFinder method was used to comprehensively evaluate the optimal reference genes in different tissues of V. dunalianum. Finally, the tissue expression of phenylalanine ammonia-lyase gene (PAL) in chlorogenic acid synthesis pathway was analyzed to verify the reliability of the evaluation results of the appropriate reference gene.
In the different tissues of V. dunalianum, the expression stability of 60S-2 was the best, followed by PP2A-2 gene, and the expression stability of ARP-1, 60S-1 and EIF-4A-2 were in the middle, the expression stability of EIF-4A-1 was the worst. Using 60S-2 gene as the reference gene, the variation trend of PAL gene expression and chlorogenic acid content in different tissues was consistent, indicating that PAL gene was involved in the synthesis of chlorogenic acid in V. dunalianum.
60S-2 is the most stable reference gene for the seven candidate genes tested in different tissues of V. dunalianum, which provides the most appropriate reference gene for subsequent studies on the expression of other functional genes in different tissues of V. dunalianum.
[1] |
VALASEK M A, REPA J J. The power of real-time PCR[J]. Advances in Physiology Education, 2005, 29(3): 151. DOI: 10.1152/advan.00019.2005.
|
[2] |
HARAGUCHI R, HIRAO T, YAMADA T. Detection and quantification of Serpula himantioides in the wood of Chamaecyparis pisifera butt rot trees by real-time PCR[J]. Forests, 2022, 13(9): 1429. DOI: 10.3390/f13091429.
|
[3] |
LI C, XU J, DENG Y, et al. Selection of reference genes for normalization of cranberry (Vaccinium macrocarpon Ait.) gene expression under different experimental conditions[J]. PLoS One, 2019, 14(11): e0224798. DOI: 10.1371/journal.pone.0224798.
|
[4] |
YANG R, YAN Y D, ZENG Y L, et al. Correlation between squalene synthase promoter and WRKY transcription factor in Camellia oleifera[J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(1): 34. DOI: 10.1080/14620316.2020.1785959.
|
[5] |
DU G G, WANG L Y, LI H W, et al. Selection and validation of reference genes for quantitative gene expression analyses in persimmon (Diospyros kaki Thunb.) using real-time quantitative PCR[J]. Biologia Futura, 2019, 70(4): 261. DOI: 10.1556/019.70.2019.24.
|
[6] |
侯宽昭. 中国种子植物科属词典[M]. 北京: 科学出版社, 1998.
|
[7] |
罗旭璐, 张德国, 李永和, 等. 樟叶越橘阴干果实的营养成分[J]. 江苏农业科学, 2014, 42(1): 242. DOI: 10.15889/j.issn.1002-1302.2014.01.103.
|
[8] |
LUO X L, LI N, XU M, et al. HPLC simultaneous determination of arbutin, chlorogenic acid and 6′-O-caffeoylarbutin in different parts of Vaccinium dunalianum Wight[J]. Natural Product Research, 2015, 29(20): 1963. DOI: 10.1080/14786419.2015.1013472.
|
[9] |
云南省药材公司. 云南中药资源名录[M]. 北京: 科学出版社, 1993.
|
[10] |
ZHAO P, TAKASHI T, KEISUKE H, et al. Caffeoyl arbutin and related compounds from the buds of Vaccinium dunalianum[J]. Phytochemistry, 2008, 69(18): 3087. DOI: 10.1016/j.phytochem.2008.06.001.
|
[11] |
LI N, ZENG W L, LUO X L, et al. A new arbutin derivative from the leaves of Vaccinium dunalianum Wight[J]. Natural Product Research, 2018, 32(1): 65. DOI: 10.1080/14786419.2017.1333993.
|
[12] |
XU M, LAO Q C, ZHAO P, et al. 6'-O-caffeoylarbutin inhibits melanogenesis in zebrafish[J]. Natural Product Research, 2014, 28(12): 932. DOI: 10.1080/14786419.2014.883395.
|
[13] |
WANG Y Z, DAI M S, CAI D Y, et al. Screening for quantitative real-time PCR reference genes with high stable expression using the mRNA-sequencing data for pear[J]. Tree Genetics & Genomes, 2019, 15(4): 54. DOI: 10.1007/s11295-019-1361-6.
|
[14] |
CHEN M D, WANG B, LI Y P, et al. Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions[J]. Scientific Reports, 2021, 11(1): 3161. DOI: 10.1038/s41598-021-81524-w.
|
[15] |
CHANG E M, SHI S Q, LIU J F, et al. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR[J]. PLoS One, 2012, 7(3): e33278. DOI: 10.1371/journal.pone.0033278.
|
[16] |
NONG Q D, YANG Y C, ZHANG M Y, et al. RNA-seq-based selection of reference genes for RT-qPCR analysis of pitaya[J]. Febs Open Bio, 2019, 9(8): 1403. DOI: 10.1002/2211-5463.12678.
|
[17] |
YANG J, YANG X Z, KUANG Z, et al. Selection of suitable reference genes for qRT-PCR expression analysis of Codonopsis pilosula under different experimental conditions[J]. Molecular Biology Reports, 2020, 47(6): 4169. DOI: 10.1007/s11033-020-05501-8.
|
[18] |
HE M J, CUI S L, YANG X L, et al. Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR[J]. Electronic Journal of Biotechnology, 2017, 28: 76. DOI: 10.1016/j.ejbt.2017.05.004.
|
[19] |
WANG W T, HU S Y, CAO Y, et al. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions[J]. Molecular Biology Reports, 2021, 48(2): 115. DOI: 10.1007/s11033-021-06153-y.
|
[20] |
KOZERA B, RAPACZ M. Reference genes in real-time PCR[J]. Journal of Applied Genetics, 2013, 54(4): 391. DOI: 10.1007/s13353-013-0173-x.
|
[21] |
熊宏, 陈海涛, 宋健, 等. 樟叶越桔甘油醛-3-磷酸脱氢酶基因VdGAPDH1的cDNA克隆与序列分析[J]. 中南林业科技大学学报, 2016, 36(7): 17. DOI: 10.14067/j.cnki.1673-923x.2016.07.004.
|
[22] |
陈海涛, 邵亚林, 赵展平, 等. 樟叶越桔VdARP7基因片段克隆与表达分析[J]. 西南林业大学学报, 2018, 38(4): 179. DOI: 10.11929/j.issn.2095-1914.2018.04.028.
|
[23] |
SHAO Y L, CHEN A Y, CHANG W, et al. Selection of appropriate reference genes in different tissues of Vaccinium dunalianum Wight by quantitative real-time PCR for gene expression studies[J]. Canadian Journal of Plant Science, 2022, 102(1): 207. DOI: 10.1139/CJPS-2020-0302.
|
[24] |
FLORIAN H, BETTINA K, STEFANIE S, et al. Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization[J]. Analytical Biochemistry, 2004, 335(1): 1. DOI: 10.1016/j.ab.2004.08.024.
|
[25] |
许雷, 刘一星, 方连玉. 大青杨叶片总RNA的快速提取方法[J]. 生物技术通讯, 2010, 21(6): 857. DOI: 10.3969/j.issn.1009-0002.20.
|
[26] |
王旭, 敖妍, 刘阳, 等. 文冠果实时荧光定量PCR内参基因的筛选[J]. 分子植物育种, 2020, 18(9): 2977. DOI: 10.13271/j.mpb.018.002977.
|
[27] |
梁子英, 刘芳. 实时荧光定量PCR技术及其应用研究进展[J]. 现代农业科技, 2020(6): 1. DOI: 10.3969/j.issn.1007-5739.2020.06.0.
|
[28] |
VANDESOMPELE J, PRETER K V, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): 00341. DOI: 10.1186/gb-2002-3-7-research0034.
|
[29] |
ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245. DOI: 10.1158/0008-5472.can-04-0496.
|
[30] |
PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509. DOI: 10.1023/b:bile.0000019559.84305.47.
|
[31] |
苏丹丹, 刘玉萍, 张雨, 等. 苦豆子实时荧光定量PCR内参基因筛选与验证[J]. 植物生理学报, 2022, 58(7): 1295. DOI: 10.13592/j.cnki.ppj.100156.
|
[32] |
XIE F L, SUN G L, STILLER J W, et al. Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database[J]. PLoS One, 2011, 6(11): e26980. DOI: 10.1371/journal.pone.0026980.
|
[33] |
HERNANDEZ F P V, NUNEZEZ M M, RIVAS M R, et al. Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth[J]. Plant Biology, 2018, 20(4): 713. DOI: 10.1111/plb.12725.
|
[34] |
明如宏, 李良波, 姚绍嫦, 等. 绞股蓝实时荧光定量PCR内参基因筛选和验证[J]. 中药材, 2022, 45(5): 1070. DOI: 10.13863/j.issn1001-4454.2022.05.010.
|
[35] |
LIU D C, HUANG X R, LIN Y, et al. Identification of reference genes for transcript normalization in various tissue types and seedlings subjected to different abiotic stresses of woodland strawberry Fragaria vesca[J]. Scientia Horticulturae, 2019, 261(3): 108840. DOI: 10.1016/j.scienta.2019.108840.
|
[36] |
YU W J, TAO Y, LUO L P, et al. Evaluation of housekeeping gene expression stability in carnation (Dianthus caryophyllus)[J]. New Zealand Journal of Crop and Horticultural Science, 2021, 49(4): 347. DOI: 10.1080/01140671.2021.1883069.
|
[37] |
WANG H L, WEN H S, LI Y, et al. Evaluation of potential reference genes for quantitative RT-PCR analysis in spotted sea bass (Lateolabrax maculatus) under normal and salinity stress conditions[J]. PeerJ, 2018, 6(10): e5631. DOI: 10.7717/peerj.5631.
|
[38] |
杨英英, 赵林姣, 杨桂娟, 等. ‘麦缘锦楸’叶色表型qRT-PCR内参基因筛选及验证[J]. 林业科学研究, 2022, 35(1): 123. DOI: 10.13275/j.cnki.lykxyj.2022.01.014.
|
[39] |
杨婷, 薛珍珍, 李娜, 等. 铁十字秋海棠斑叶发育过程内参基因筛选及验证[J]. 园艺学报, 2021, 48(11): 2251. DOI: 10.16420/j.issn.0513-353x.2021-0397.
|
[40] |
张秋悦, 刘昌来, 于晓晶, 等. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 2022, 49(7): 1557. DOI: 10.16420/j.issn.0513-353x.2021-0376.
|
[41] |
VASHISTH T, JOHNSON L, MALLADI A. An efficient RNA isolation procedure and identification of reference genes for normalization of gene expression in blueberry[J]. Plant Cell Reports, 2011, 30(12): 2167. DOI: 10.1007/s00299-011-1121-z.
|
[42] |
DIE J V, ROWLAND L J. Superior cross-species reference genes: a blueberry case study[J]. PLoS One, 2013, 8(9): e73354. DOI: 10.1371/journal.pone.0073354.
|
[43] |
JOSE S, ABBEY J, JAAKOLA L, et al. Selection and validation of reliable reference genes for gene expression studies from Monilinia vaccinii-corymbosi infected wild blueberry phenotypes[J]. Scientific Reports, 2020, 10(1): 11688. DOI: 10.1038/s41598-020-68597-9.
|
[44] |
BARSALOBRES-CAVALLARI C F, SEVERINO F E, MALUF M P, et al. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions[J]. BMC Molecular Biology, 2009, 10(1): 1. DOI: 10.1186/1471-2199-10-1.
|
[45] |
TROND L, CATHRINE L. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress[J]. Analytical Biochemistry, 2009, 387(2): 238. DOI: 10.1016/j.ab.2009.01.024.
|
[46] |
GAMM M, HELOIR M C, KELLONIEMI J, et al. Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis[J]. Molecular Genetics and Genomics, 2011, 285(4): 273. DOI: 10.1007/s00438-011-0607-2.
|
[47] |
LE D T, ALDRICH D L, VALLIYODAN B, et al. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions[J]. PLoS One, 2012, 7(9): e46487. DOI: 10.1371/journal.pone.0046487.
|
[48] |
GUO R, GUO H Y, ZHANG Q Y, et al. Evaluation of reference genes for RT-qPCR analysis in wild and cultivated cannabis[J]. Bioscience, Biotechnology, and Biochemistry, 2018, 82(11): 1902. DOI: 10.1080/09168451.2018.1506253.
|
[49] |
LIU D S, SHI L D, HAN C G, et al. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR[J]. PLoS One, 2012, 7(9): e46451. DOI: 10.1371/journal.pone.0046451.
|
[50] |
MUKESH J, AASHIMA N, AKHILESH K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications, 2006, 345(2): 646. DOI: 10.1016/j.bbrc.2006.04.140.
|
[51] |
GUO J L, LING H, WU Q B, et al. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses[J]. Scientific Reports, 2014, 4: 7042. DOI: 10.1038/srep07042.
|
[52] |
TIAN C, JIANG Q, WANG F, et al. Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves[J]. PLoS One, 2015, 10(2): e0117569. DOI: 10.1371/journal.pone.0117569.
|
[1] | Sijia ZHOU, Diangang HAN, Jun DONG, Yunqing YANG, Lingling YE, Jing LI, Chong ZHANG, Jige XIN. Establishment and Application of Real-time Fluorescence Quantitative RT-PCR for Detection of BVDV Genotype 1[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 423-430. DOI: 10.12101/j.issn.1004-390X(n).202209066 |
[2] | Xue LI, Guoze LI, Ling YANG, Junrong TANG, Ping ZHAO, Yong DING. Callus Induction and Adventitious Root Regeneration in Young Stem of Vaccinium dunalianum Wight[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(6): 1009-1016. DOI: 10.12101/j.issn.1004-390X(n).202007022 |
[3] | Huifang LI, Min GUI, Pingping ZHANG, Meiling ZHANG, Yongzhong LI, Yating LIU. Establishment and Identification of TRV-mediated Tomato spotted wilt orthotospovirus N Gene Silencing System in Pepper[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(3): 409-416. DOI: 10.12101/j.issn.1004-390X(n).202005019 |
[4] | Yue CHEN, Mingmo LUO, Shanglin LI, Chunyan LI, Yufang RAN, Wei LI, Bin HU. The Spatial Distribution Characteristics of Methanogens in the Sediments of Dianchi Lake by Fluorescence Quantitative PCR[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(1): 132-139. DOI: 10.12101/j.issn.1004-390X(n).202002015 |
[5] | Raofen YANG, Yuanxiao YANG, Qin WANG, Siying PU, Xiangdong ZI. Cloning of PGRMC1 Gene and Comparative Analysis ofIts Expression in Tissues Related to Reproductionbetween Yak and Cattle[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(5): 877-883. DOI: 10.12101/j.issn.1004-390X(n).201712027 |
[6] | LUO Bi, FENG Jieshen, BAI Heling, LIU Chao, ZHAO Jinlong, TAN Yaling, XU Jin. Cloning and Expression Analyses of Glycosyltransferases Gene OrGT1(t) in Oryza rufupogon[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(4): 571-576. DOI: 10.16211/j.issn.1004-390X(n).2017.04.001 |
[7] | CHEN Li, HU Xianqi, YANG Shengchao, HOU Xing, HUANG Yueyi. Identification of a New Root-knot Nematode Disease on Marsdenia tenacissima(Roxb.) Wight et Am[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 1-5. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.001 |
[8] | YUE Kai, GAO Xue, CAO Hongyun, GU Anyu, XU Yuran, XU Ye, LIU Yating, LI Xiaolin. Development of Multiplex PCR Detection System for Xanthomonas oryzae pv. oryzicola and Xanthomonas oryzae pv. oryzae[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(5): 773-778. DOI: 10.16211/j.issn.1004-390X(n).2016.05.001 |
[9] | MO Yunrong, BAO Jiyan, WANG Ziran, ZUO Zhimei, ZHU Haishan, LYU Junheng, ZHAO Kai. Comparative of Methods and RT-qPCR for RNA Extraction from Leaves Inoculated by Late Blight of Tomato with Different Resistance[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(3): 421-426. DOI: 10.16211/j.issn.1004-390X(n).2016.03.008 |
[10] | LI Miao, ZHOU Lihong, LIU Yating, LIU Feng, YANG Jun, JI Guanghai. Detection of Plasmodiophora brassicae with Real-time Quantitative PCR in Yunnan Province[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(1): 43-48. DOI: 10.16211/j.issn.1004-390X(n).2016.01.007 |