• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Zhuo QING, Rui SU, Wenzheng ZHAO, et al. Transcriptome Analysis of Camellia reticulata Nectary in Two Development Stages[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(2): 185-192. DOI: 10.12101/j.issn.1004-390X(n).201803045
Citation: Zhuo QING, Rui SU, Wenzheng ZHAO, et al. Transcriptome Analysis of Camellia reticulata Nectary in Two Development Stages[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(2): 185-192. DOI: 10.12101/j.issn.1004-390X(n).201803045

Transcriptome Analysis of Camellia reticulata Nectary in Two Development Stages

More Information
  • Received Date: March 25, 2018
  • Revised Date: June 27, 2018
  • Available Online: March 13, 2019
  • Published Date: February 28, 2019
  • PurposeThe component of production secreted by nectary is regulated by the nectary gene. And the chemical component of nectar can directly affect the attraction for pollinator. This study was undertaken to reveal the change of gene expression profile of nectary in developing and secreting process.
    MethodsThe high-throughput Illumina Hiseq sequencing platform was used to investigate the transcriptome of nectary on the bud phase and nectary on the fifth day after anthesis. The sequencing data were subsequently analyzed to help reveal the change of gene expression profile in developing and secreting process.
    Result58 488 differentially expressed genes were detected in nectary developing and secreting process. After screening 1 602 up-regulated genes and 693 down-regulated genes were obtained. Gene ontology enrichment analysis showed that 3 096 DEGs were involved in biological processes, the enrichment DEGs participated in biological regulation, cellular process and metabolic process. Meanwhile, 1 280 DEGs could be mapped as functional molecule, the enrichment DEGs involved in binding, catalytic activity and transporter activity. KEGG pathway enrichment analysis revealed that 2 147 DEGs were involved in 292 different metabolic pathways, which enriched larger numbers of DEGs including metabolism (941 genes, accounted for 43.83%), and it main involved in carbohydrate metabolism and amino acid metabolism.
    ConclusionThe majority of differentially expressed genes in nectary developing and secreting process were related to the regulation of chemical component in nectar.
  • [1]
    BRANDENBURG A, DELL’OLIVO A, BSHARY R, et al. The sweetest thing: advances in nectar research[J]. Current Opinion in Plant Biology, 2009, 12(4): 486. DOI: 10.1016/j.pbi.2009.04.002.
    [2]
    HEIL M. Nectar: generation, regulation and ecological functions[J]. Trends in Plant Science, 2011, 16(4): 191. DOI: 10.1016/j.tplants.2011.01.003.
    [3]
    NICOLSON S W, THORNBURG R W. Nectar chemistry[M]. New York: Springer Netherlands, 2007.
    [4]
    卿卓, 苏睿, 董坤, 等. 花蜜化学成分及其生态功能研究进展[J]. 生态学杂志, 2014, 33(3): 825.
    [5]
    GONZALEZTEUBER M, HEIL M. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters[J]. Plant Signaling and Behavior, 2009, 4(9): 809. DOI: 10.4161/psb.4.9.9393.
    [6]
    PACINI E, NEPI M. Nectar production and presentation[M]. Dordrecht: Springer, 2007.
    [7]
    LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508(7497): 546. DOI: 10.1038/nature13082.
    [8]
    BOWMAN J L, SMYTH D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains[J]. Development, 1999, 126(11): 2387.
    [9]
    MCKIM S M, STENVIK G, BUTENKO M A, et al. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis[J]. Development, 2008, 135: 1537. DOI: 10.1242/dev.012807.
    [10]
    GE Y X, ANGENENT G C, WITTICH P E, et al. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida[J]. The Plant Journal, 2000, 24(6): 725. DOI: 10.1046/j.1365-313x.2000.00926.x.
    [11]
    SONG J T, SEO H S, SONG S I, et al. NTR1 encodes a floral nectary-specific gene in Brassica campestris L. ssp. pekinensis[J]. Plant Molecular Biology, 2000, 42(4): 647. DOI: 10.1023/A:1006381625421.
    [12]
    CARTER C J, THORNBURG R W. Tobacco nectarin Ⅲ is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities[J]. Plant Molecular Biology, 2004, 54: 415. DOI: 10.1023/B:PLAN.0000036373.84579.13.
    [13]
    COMPAGNON V, DIEHL P, BENVENISTE I, et al. CYP86B1 is required for very long chain ω-hydroxyacid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester[J]. Plant Physiology, 2009, 150: 1831. DOI: 10.1104/PP.109.141408.
    [14]
    KRAM B W, CARTER C J. Arabidopsis thaliana as a model for functional nectary analysis[J]. Sexual Plant Reproduction, 2009, 22(4): 235. DOI: 10.1007/s00497-009-0112-5.
    [15]
    黄佳聪, 陆斌, 阚欢. 腾冲红花油茶籽油主要理化成分分析[J]. 西南林学院学报, 2010, 30(5): 29. DOI: 10.3969/j.issn.2095-1914.2010.05.007.
    [16]
    舒金帅, 刘玉梅, 李占省, 等. 植物蜜腺研究进展及展望[J]. 园艺学报, 2014, 41(9): 1846.
    [17]
    宋焕芝, 郝丽红, 于晓南. 芍药蜜腺与蜜露分泌的观察研究[C]//张启翔. 中国观赏园艺研究进展2014. 北京: 中国林业出版社, 2014.
    [18]
    郝苏玉, 张佩佩, 贵梦圆, 等. 甘蓝型油菜花的蜜腺发育与传粉的协调性研究[J]. 河南师范大学学报(自然科学版), 2014(1): 141. DOI: 10.16366/j.cnki.1000-2367.2014.01.026.
    [19]
    刘秀岩, 刘亚娟, 朱俊义, 等. 长白楤木花的结构研究[J]. 通化师范学院学报, 2016, 37(6): 21. DOI: 10.13877/j.cnki.cn22-1284.2016.06.008.
    [20]
    赵广印, 李建军, 高洁. 花蜜中酚类物质对群落中同花期植物传粉的影响[J]. 生态学报, 2013, 33(1): 89.
    [21]
    荀二娜, 赵骥民, 郭继勋, 等. 花蜜微生物及其生态功能研究进展[J]. 生态学报, 2017, 37(6): 1757.
    [22]
    徐细建, 卢晓欣, 梁勤, 等. 茶与油茶花蜜糖类物质研究[J]. 中国蜂业, 2016, 67(2): 16. DOI: 10.3969/j.issn.0412-4367.2016.02.005.
    [23]
    RICHARDSON L L, BOWERS M D, IRWIN R E. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness[J]. Ecology, 2016, 97(2): 325. DOI: 10.1890/15-0263.1.
    [24]
    ANTOŃ S, KOMOŃ-JANCZARA E, DENISOW B. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors[J]. Planta, 2017, 246(6): 1051. DOI: 10.1007/s00425-017-2748-y.
    [25]
    CARTER C, SHAFIR S, YEHONATAN L, et al. A novel role for proline in plant floral nectars[J]. Die Naturwissenschaften, 2006, 93(2): 72. DOI: 10.1007/s00114-005-0062-1.
    [26]
    ZHA H G, MILNE R I, ZHOU H X, et al. Identification and cloning of class Ⅱ and Ⅲ chitinases from alkaline floral nectar of Rhododendron irroratum, Ericaceae[J]. Planta, 2016, 244(4): 805. DOI: 10.1007/s00425-016-25-46-y.
    [27]
    MA X L, MILNE R I, ZHOU H X, et al. Floral nectar of the obligate outcrossing Canavalia gladiata (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class Ⅲ acidic chitinase[J]. Plant Biology, 2017, 19(5): 749. DOI: 10.1111/plb.12583.
  • Cited by

    Periodical cited type(3)

    1. 李归林,黄佳聪,蒋华,杨晓霞,周娟,董琼. 不同传粉模式对腾冲红花油茶坐果率的影响. 云南农业大学学报(自然科学). 2024(01): 120-124 .
    2. 黄润生,张晖,廖柏勇,王龙远,代文魁,薛彬娥,王溢,李永泉. 油茶花芽分化后期内源激素与代谢组学差异分析. 经济林研究. 2021(03): 99-113+155 .
    3. 代佳妮,于靖,郑蔚,王健,吴友根,胡新文,赖杭桂. 海南油茶2个优良单株的比较转录组学分析. 热带生物学报. 2020(04): 426-436 .

    Other cited types(2)

Catalog

    Article views (2341) PDF downloads (40) Cited by(5)