• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Yan HE, Zhilin XIA, Shiping ZHU, et al. Automatic Thinning Algorithm of Plug Seedling Based on Machine Vision[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(1): 50-57. DOI: 10.12101/j.issn.1004-390X(n).201708033
Citation: Yan HE, Zhilin XIA, Shiping ZHU, et al. Automatic Thinning Algorithm of Plug Seedling Based on Machine Vision[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(1): 50-57. DOI: 10.12101/j.issn.1004-390X(n).201708033

Automatic Thinning Algorithm of Plug Seedling Based on Machine Vision

More Information
  • Received Date: August 17, 2017
  • Revised Date: March 05, 2018
  • Available Online: January 09, 2019
  • Published Date: December 31, 2018
  • Purpose In order to meet the requirements of fast, accurate and automatic thinning of tobacco seedlings, we put a forward automatic tray seedling thinning algorithm based on machine vision. It can avoid the shortcomings of the low efficiency, arbitrariness of the traditional human eye observation.
    Methods K-means clustering was used to image segmentation of tobacco seedlings in Lab color space, according to the matrix row sum method, draw pixel coordinates between the two peaks, locate its the region position, divide the plug into 128 cells, convert the target area to a binary image. Research indicated that each kind of shape feature such as roundness, aspect ratio and rectangularity had different values and could be used as the separating parameters by comparing each feature respectively for the three ingredients, which are the single, multi-plant and holes. The use of seedling plants area and perimeter, in different growth period to set a suitable threshold to achieve the purpose of automatic seedling.
    Results The simulation data and analysis showed the roundness of 1.256 6, aspect ratio of 1.571 4, rectangular of 0.716 5 the best difference between the effect. Taking the area distribution in the 111-243 (pixels), the circumference of the distribution in the 16-33 (pixels) can be determined as strong seedlings. We developed a tobacco seedling automatic thinning software system based on machine vision on the MATLAB R2015a environment.
    Conclusion The result showed that the correct identification rate of tobacco seedling had reached more than 97.04%, the hole position had reached 100%, for the thinning position and sound seedling average rate were respectively 94.76% and 89.58%, this method provided a theoretical basis and technical support for the further development of the automatic seedling thinning machine based on machine vision.
  • [1]
    刘国顺. 烟草栽培学[M]. 北京: 中国农业出版社, 2003.
    [2]
    师会勤. 我国烤烟育苗的几种主要方式探讨[J]. 南昌高专学报, 2005, 20(1): 100. DOI: 10.3969/j.issn.1008-7354.2005.01.037
    [3]
    杨怀千. 烤烟漂湿育苗的研究及配套技术的推广[D]. 长沙: 湖南农业大学, 2010.
    [4]
    魏星, 吴华建. 不同育苗方式对烟苗质量及烟叶产质量的影响[J]. 陕西农业科学, 2011, 57(2): 77. DOI: 10.3969/j.issn.0488-5368.2011.02.030
    [5]
    徐文兵. 粉煤灰替代烟草育苗基质中草炭的研究[D]. 长沙: 湖南农业大学, 2014.
    [6]
    杨飞, 祝诗平, 邱青苗. 基于计算机视觉的花椒外观品质检测及其MATLAB实现[J]. 农业工程学报, 2008, 24(1): 198. DOI: 10.3321/j.issn:1002-6819.2008.01.039
    [7]
    CHEN Y R, CHAO K L, KIM S. Machine vision technology for agricultural applications[J]. Computers and Electronics in Agriculture, 2002, 36: 173.
    [8]
    应义斌, 饶秀勤, 赵匀, 等. 机器视觉技术在农产品品质自动识别中的应用(Ⅰ)[J]. 农业工程学报, 2000, 16(1): 103. DOI: 10.3321/j.issn:1002-6819.2000.01.001
    [9]
    肖超云. 基于机器视觉的杂草识别研究[D]. 镇江: 江苏大学, 2007.
    [10]
    贺鹏, 黄林. 植物叶片特征提取及识别[J]. 农机化研究, 2008(6): 168. DOI: 10.3969/j.issn.1003-188X.2008.06.050
    [11]
    吴兰兰. 基于数字图像处理的玉米苗期田间杂草的识别研究[D]. 武汉: 华中农业大学, 2010.
    [12]
    阚江明, 王怡萱, 杨晓微, 等. 基于叶片图像的植物识别方法[J]. 科技导报, 2010, 28(23): 81
    [13]
    贾洪雷, 王刚, 郭明卓, 等. 基于机器视觉的玉米苗植株数量获取方法与试验[J]. 农业工程学报, 2015, 31(3): 215
    [14]
    庄珍珍, 祝诗平, 孙雪剑, 等. 基于机器视觉的烟叶自动分级方法研究[J]. 西南师范大学学报, 2016, 41(4): 123
    [15]
    孙明, 凌云. 基于计算机视觉的萝卜幼苗自动识别技术[J]. 农业机械学报, 2002, 33(5): 75. DOI: 10.3969/j.issn.1000-12982002.05.023
    [16]
    蒋焕煜, 施经挥, 任烨, 等. 机器视觉在幼苗自动移钵作业中的应用[J]. 农业工程学报, 2009, 25(5): 127. DOI: 10.3969/j.issn.1002-6819.2009.05.24
    [17]
    邹秋霞, 杨林楠, 彭琳, 等. 基于Lab空间和K-Means聚类的叶片分割算法研究[J]. 农机化研究, 2015(9): 222. DOI: 10.3969/j.issn.1003-188X.2015.09.051
    [18]
    杨帆. 数字图像处理及应用(MATLAB版)[M]. 北京: 化学工业出版社, 2013.
  • Related Articles

    [1]YUAN Jianqing, QIU Xunchao, GAO Rui, SU Zhongbin. Hyperspectral Identification of Rice Canopy Leaf Blast and Nitrogen Deficiency[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2025, 40(1): 167-175. DOI: 10.12101/j.issn.1004-390X(n).202306001
    [2]ZHOU Zidan, XIANG Shipeng, CHEN Zhifeng, HU Junjie, LI Yangyang, ZHOU Shimin, ZHAI Zhengguang, LI Qiang. Selection of Ningxiang Cigar Varieties Based on Clustering and Optimal Scaling Method[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202407026
    [3]Huiqin CHEN, Baoliang BI, Qing HU. Effects of Different Salinity Acclimation on Tilapia Muscle Quality, Serum Biochemical Profiles and Na+-K+-ATPase Activity[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(6): 971-978. DOI: 10.12101/j.issn.1004-390X(n).202203043
    [4]Chen WANG, Juan YANG, Luju LAI, Zhaofang YUAN, Suocheng WEI. FRBI Down-regulates K-Ras and c-Myc Genes of Ovarian Cancers and IP3 Signal Pathway[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(1): 22-28. DOI: 10.12101/j.issn.1004-390X(n).201809001
    [5]Wujun ZHANG, Xiujian DUAN, Xiong YAO, Yongqun TANG, Qiangming LIU, Xianwei ZHANG, Renpeng XIAO, Xueyuan YU, Ming WEN, Jingyong LI. Effects of Delayed Nitrogen Fertilizer Application on Sink Source Characteristics, Dry Matter Accumulation and Grain yield of Machine-Transplanted Hybrid Indica Rice in Upper Reaches of the Yangtze River[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(6): 1003-1010. DOI: 10.12101/j.issn.1004-390X(n).201711036
    [6]LONG Minghai, LI Changyu, XIANG Hu, CHEN Lin, XU Yongkang, ZI Wenhua. Applications of Support Vector Machine in Tobacco Blend Grouping of Chinese Type Cigarette[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(6): 1045-1051. DOI: 10.16211/j.issn.1004-390X(n).2017.06.012
    [7]HE Liqiong, HAI Meirong, DABUXILATU. The Effects of Enriched CO2 and K Level on Cucumber Photosynthesis[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(1): 57-62. DOI: 10.16211/j.issn.1004-390X(n).2017.01.008
    [8]ZHANG Jian, LI Chao, TAO Ying, HUANG Yunjie, LI Exian, SHEN Xiaofeng, ZHAO Wei, WEI Keyi. Study of Ammonia Release in Mainstream Cigarette Smoke under Intensive Smoking Regime by Ion Chromatography[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(5): 856-861. DOI: 10.16211/j.issn.1004-390X(n).2016.05.013
    [9]CHENG Shang, YIN Suhui, LIU Jialin, GAO Lijiao, CAO Lan, JIE Huadong, DAI Rongguo, LUO Wenhua, XIE Hua. Study on the Hydrolysis of Royal Jelly Protein by Proteinase K[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(2): 288-293. DOI: 10.16211/j.issn.1004-390X(n).2016.02.015
    [10]SU Yang, ZHOU Xiaochao, GAO Dan, ZHOU Kaibing. Studies on the Content Change Characteristics of K, Ca and Mg in Pericarp of Litchi chinensis Sonn.cv. Feizixiao and Their Relation to the Pericarp's Coloring[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(2): 274-280. DOI: 10.16211/j.issn.1004-390X(n).2016.02.013
  • Cited by

    Periodical cited type(5)

    1. 冯川,祝诗平,黄华,严森垚,于丽敏. 基于深度学习的高效率烤烟等级识别模型研究. 西南大学学报(自然科学版). 2025(01): 213-225 .
    2. 张昌松,李伟. 基于YOLO v5的直播油菜激光间苗系统设计与试验. 农业机械学报. 2024(04): 40-52 .
    3. 赵玉清,贾奥莹,王天允,焦雨杰,吴思婷,李嘉舜,张悦. 基于机器学习的缺陷咖啡生豆检测. 自动化应用. 2024(11): 1-6 .
    4. 吴聪,郭志强,杨杰. 基于改进的注意力机制残差网络穴盘幼苗分类算法研究. 激光与光电子学进展. 2022(22): 89-98 .
    5. 冀荣华,邹国伟,袁宏涛,郑立华. 基于贪心—蚁群钵苗自动移栽路径分段优化算法研究. 中国农机化学报. 2019(12): 165-170 .

    Other cited types(3)

Catalog

    Article views (2405) PDF downloads (17) Cited by(8)