Citation: | LI Yu, FAN Zhiwei, XU Shengguang, et al. Effects of Chemical Fertilizer Reduction Combined with Biochar on the Content of Related Substances and Enzyme Activity of NO Synthesis and AsA-GSH Cycle in Tobacco Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 70-79. DOI: 10.12101/j.issn.1004-390X(n).202304046 |
To study the mitigation mechanism of reduced chemical fertilizer application combined with biochar on continuous cropping obstacles in tobacco, especially the effects on the enzymes and non-enzymatic substances methyl jasmonate (MeJA), S-nitrosothiols (SNOs), and so on in the nitrogen sources and (AsA-GSH) cycle of tobacco plants.
Using Yunyan 87 as the test material, five fertilizer applications and biochar additions per plant were set, including fertilizer 30 g (T1), fertilizer 30 g+biochar 300 g (T2), fertilizer 45 g (T3); fertilizer 45 g+biochar 300 g (T4), fertilizer 60 g (T5). The effects of different treatments on the antioxidant system of tobacco were analyzed by measuring the contents of non-enzyme antioxidants and related enzyme activities in AsA-GSH cycle system, as well as the contents of MeJA and SNOs.
1) In T5 treatment, the nitrate reductase activity and nitric oxide (NO) content in tobacco leaves were 244.01 IU/L and 150.05 μmol/g, respectively; in contrast, T2 treatment significantly reduced by 15.50% and 17.53%, respectively. 2) In T5 treatment, SNOs content and S-nitrosoglutathione reductase (GSNOR) activity were 114.76 pg/mL and 147.42 IU/L, respectively; in contrast, T2 and T4 treatments significantly increased SNOs content by 9.72% and 17.78%, respectively, and significantly decreased GSNOR activity by 31.93% and 39.00%, respectively. 3) In T5 treatment, levels of AsA, GSH, ascorbate peroxidase, glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and MeJA in tobacco leaves were 266.04 μg/g, 75.03 ng/L, 66.14 ng/L, 162.77 ng/L, 17.66 ng/L, and 36.85 nmol/L, respectively; in contrast, T2 and T4 treatments significantly increased GR activity by 88.34% and 123.14%, respectively, and significantly increased MeJA levels by 6.90% and 17.26%, respectively.
Reduced fertilizer application combined with biochar can decrease NO content in tobacco leaves under stress conditions. NO can regulate SNOs content, GSNOR activity, AsA-GSH cycle-related substances and enzyme activity, and synthesis of MeJA, to maintain redox balance, mitigate stress responses from continuous cropping obstacles and enhance tobacco resistance.
[1] |
闫新甫, 孔劲松, 罗安娜, 等. 近20年全国烤烟产区种植规模消长变化分析[J]. 中国烟草科学, 2021, 42(4): 92. DOI: 10.13496/j.issn.1007-5119.2021.04.014.
|
[2] |
侯毛毛, 邵孝侯, 陈竞楠, 等. EM保水剂施用对烤烟的影响及其施用制度的优选研究[J]. 中国生态农业学报(中英文), 2016, 24(5): 628. DOI: 10.13930/j.cnki.cjea.151206.
|
[3] |
张仕祥, 过伟民, 李辉信, 等. 烟草连作障碍研究进展[J]. 土壤, 2015, 47(5): 823. DOI: 10.13758/j.cnki.tr.2015.05.001.
|
[4] |
王艳芳, 潘凤兵, 展星, 等. 连作苹果土壤酚酸对平邑甜茶幼苗的影响[J]. 生态学报, 2015, 35(19): 6566. DOI: 10.5846/stxb201402180284.
|
[5] |
张亚琴, 陈雨, 雷飞益, 等. 药用植物化感自度作用研究进展[J]. 中草药, 2018, 49(8): 11. DOI: 10.7501/j.issn.02 53-2670.2018.08.032.
|
[6] |
黄高峰, 王丽慧, 方云花, 等. 干旱胁迫对菊芋苗期叶片保护酶活性及膜脂过氧化作用的影响[J]. 西南农业学报, 2011, 24(2): 552. DOI: 10.16213/j.cnki.scjas.2011.02. 073.
|
[7] |
张梦如, 杨玉梅, 成蕴秀, 等. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34(9): 1916. DOI: 10.7606/j.issn.1000-4025.2014.09.1916.
|
[8] |
孙佳平, 张福顺, 邳植, 等. 低温胁迫对甜菜抗氧化系统的影响[J]. 中国农学通报, 2022, 38(12): 26. DOI: 10.11924/j.issn.1000-6850.casb2021-0844.
|
[9] |
毛佳昊, 熊晓辉, 卢一辰. 茉莉酸调控植物应对逆境胁迫作用的研究进展[J]. 生物加工过程, 2021, 19(4): 413. DOI: 10.3969/j.issn.1672-3678.2021.04.008.
|
[10] |
FOTOPOULOS V, ZIOGAS V, TANOU G, et al. Involvement of AsA/DHA and GSH/GSSG ratios in gene and protein expression and in the activation of defence mechanisms under abiotic stress conditions[M]//ANJUM N A, CHAN M T, UMAR S. Ascorbate-glutathione pathway and stress tolerance in plants. Dordrecht: Springer, 2010.
|
[11] |
任瑞芬, 李泽迪, 姜雪茹, 等. AsA-GSH抗氧化系统在超低温保存后牡丹花粉活力下降中的作用机制[J]. 植物生理学报, 2021, 57(7): 1517. DOI: 10.13592/j.cnki.ppj.2021.0004.
|
[12] |
SUN D Q, LU X H, HU Y L, et al. Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana[J]. Scientia Horticulturae, 2013, 164: 484. DOI: 10.1016/j.scienta.20 13.10.011.
|
[13] |
LANG D Y, YU X X, JIA X X, et al. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings[J]. Scientia Horticulturae, 2020, 266: 109287. DOI: 10.1016/j.scienta.2020.109287.
|
[14] |
KARUPPANAPANDIAN T, MOON J C, KIM C, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms[J]. Australian Journal of Crop Science, 2011, 5(6): 709. DOI: 10.3316/informit.282079847301776.
|
[15] |
ZHANG J, HUANG D J, WANG C L, et al. Recent progress in protein S-nitrosylation in phytohormone signaling[J]. Plant & Cell Physiology, 2019, 60(3): 494. DOI: 10.1093/pcp/pcz012.
|
[16] |
刘苗苗. 大蒜根系浸提液对连作小型西瓜化感作用的初步研究[D]. 石河子: 石河子大学, 2014.
|
[17] |
张悦. 茉莉酸甲酯及摩西球囊霉对提高草莓幼苗连作障碍抗性的作用[D]. 保定: 河北农业大学, 2014.
|
[18] |
李小萌, 陈效民, 曲成闯, 等. 生物有机肥与减量配施化肥对连作黄瓜养分利用率及产量的影响[J]. 水土保持学报, 2020, 34(2): 309. DOI: 10.13870/j.cnki.stbcxb.20 20.02.044.
|
[19] |
顾美英, 刘洪亮, 李志强, 等. 新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响[J]. 中国农业科学, 2014, 47(20): 4128. DOI: 10.3864/j.issn.0578-17 52.2014.20.021.
|
[20] |
张志龙, 陈效民, 李小萌, 等. 生物质炭与化肥配施对连作黄瓜产量及肥料利用率的影响[J]. 土壤, 2021, 53(1): 47. DOI: 10.13758/j.cnki.tr.2021.01.007.
|
[21] |
XIE Y J, MAO Y, LAI D W, et al. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance[J]. Journal of Experimental Botany, 2013, 64(10): 3045. DOI: 10.1093/jxb/ert149.
|
[22] |
田华, 段美洋, 王兰. 植物硝酸还原酶功能的研究进展[J]. 中国农学通报, 2009, 25(10): 96. DOI: 10.11924/j.issn.1000-6850.2009-0248.
|
[23] |
YAMASAKI H, SAKIHAMA Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Letters, 2000, 468(1): 89. DOI: 10.1016/S0014-5793(00)01203-5.
|
[24] |
陈银萍, 柯昀琪, 杨志娟, 等. 铅胁迫下三叶鬼针草内源一氧化氮的生成及其对氧化损伤的缓解效应[J]. 植物科学学报, 2018, 36(2): 264. DOI: 10.11913/PSJ.2095-0837.2018.20264.
|
[25] |
BEGARA-MORALES J C, SÁNCHEZ-CALVO B, CHAKI M, et al. Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs)[J]. Frontiers in Plant Science, 2016, 7: 152. DOI: 10.3389/fpls.2016.00152.
|
[26] |
陈佳欣, 冯静怡, 李娟, 等. 生物炭与干旱胁迫对冬小麦根际土壤理化性质及细菌群落的影响[J]. 西北农业学报, 2023, 32(11): 1725. DOI: 10.7606/j.issn.1004-1389.2023.11.006.
|
[27] |
吴巍, 赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010, 26(13): 75. DOI: 10.11924/j.issn.1000-6850.2010-1272.
|
[28] |
KYAING S M, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用[J]. 生物技术进展, 2011, 1(3): 159.
|
[29] |
闫丽娟. 生物炭对苹果根系及根区土壤硝酸盐代谢的影响[D]. 泰安: 山东农业大学, 2014.
|
[30] |
钟雪梅, 朱义年, 刘杰, 等. 竹炭包膜对肥料氮淋溶和有效性的影响[J]. 农业环境科学学报, 2006, 25(增刊1): 154. DOI: 10.3321/j.issn:1672-2043.2006.z1.037.
|
[31] |
高德才, 张蕾, 刘强, 等. 旱地土壤施用生物炭减少土壤氮损失及提高氮素利用率[J]. 农业工程学报, 2014, 30(6): 8. DOI: 10.3969/j.issn.1002-6819.2014.06.007.
|
[32] |
张星, 张晴雯, 刘杏认, 等. 施用生物炭对农田土壤氮素转化关键过程的影响[J]. 中国农业气象, 2015, 36(6): 709. DOI: 10.3969/j.issn.1000-6362.2015.06.007.
|
[33] |
BARROSO J B, VALDERRAMA R, CARRERAS A, et al. Quantification and localization of S-nitrosothiols (SNOs) in higher plants[M]//GUPTA K J. Plant nitric oxide: methods and protocols. New York: Springer, 2016.
|
[34] |
BEGARA-MORALES J C, SÁNCHEZ-CALVO B, CHAKI M, et al. Protein S-nitrosylation and S-glutathionylation as regulators of redox homeostasis during abiotic stress response[M]//GUPTA D K, PALMA J M, CORPAS F J. Redox state as a central regulator of plant-cell stress responses. Cham: Springer International Publishing, 2016.
|
[35] |
夏金婵. 植物亚硝基谷胱甘肽还原酶在胁迫反应中的作用研究[J]. 生物技术通报, 2018, 34(11): 36. DOI: 10.13560/j.cnki.biotech.bull.1985.2018-0514.
|
[36] |
CHRISTINE R, M. CARME E, MAYKELIS C, et al. S-nitrosoglutathione reductase affords protection against pathogens in arabidopsis, both locally and systemically[J]. Plant Physiology, 2007, 143(3): 1282. DOI: 10.11 04/pp.106.091686.
|
[37] |
LIU L M, YAN Y, ZENG M, et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock[J]. Cell, 2004, 116(4): 617. DOI: 10.1016/S0092-86 74(04)00131-X.
|
[38] |
FEECHAN A, KWON E, YUN B W, et al. A central role for S-nitrosothiols in plant disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(22): 8054. DOI: 10.1073/pnas.0501456102.
|
[39] |
DAHM C C, MOORE K, MURPHY M P. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria[J]. Journal of Biological Chemistry, 2006, 281(15): 10056. DOI: 10.1074/jbc.M51220 3200.
|
[40] |
伊丽达娜·迪力夏提, 魏佳, 王曼, 等. 基于S-亚硝基化解析一氧化氮对哈密瓜采后抗坏血酸—谷胱甘肽循环的影响[J]. 食品与发酵工业, 2023, 49(8): 128. DOI: 10.13995/j.cnki.11-1802/ts.030137.:1-11.
|
[41] |
ZIOGAS V, TANOU G, FILIPPOU P, et al. Nitrosative responses in citrus plants exposed to six abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2013, 68: 118. DOI: 10.1016/j.plaphy.2013.04.004.
|
[42] |
NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249. DOI: 10.1146/annurev.arplant.49.1.249.
|
[43] |
SINGH I, SHAH K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings[J]. Phytochemistry, 2014, 108: 57. DOI: 10.1016/j.phytochem.2014.09.007.
|
[44] |
朱宏涛, 李江, 李元, 等. 激素类农药茉莉酸及其甲酯的植物生物活性及其在农业生产中的应用[J]. 农药, 2013, 52(8): 552. DOI: 10.16820/j.cnki.1006-0413.2013.08.002.
|
[45] |
章崇玲, 曾国平, 陈建勋. 干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J]. 植物资源与环境学报, 2000, 9(4): 23. DOI: 10.3969/j.issn.1674-7895.2000.04.006.
|
[46] |
张菊平, 张会灵, 张焕丽. 外源NO降低辣椒幼苗盐害的生理效应[J]. 北方园艺, 2020(22): 10. DOI: 10.11937/bfyy.20200381.
|
[47] |
范树茂, 司国栋, 王飞菲, 等. 茉莉酸及其甲酯在农业上的应用研究进展[J]. 现代农药, 2019, 18(3): 1. DOI: 10.3969/j.issn.1671-5284.2019.03.001.
|
[48] |
李红利, 孙振元, 赵梁军, 等. 茉莉酸类物质对植物生长发育及抗性的影响[J]. 中国农学通报, 2009, 25(16): 167. DOI: 10.11924/j.issn.1000-6850.2009-0859.
|
[49] |
刘零怡, 于萌萌, 郑杨, 等. 采后一氧化氮处理调控番茄果实茉莉酸类物质合成并提高灰霉病抗性[J]. 食品科学, 2010, 31(22): 457. DOI: 10.7506/spkx1002-6630-20 1022103.
|
[50] |
朱春权, 魏倩倩, 党彩霞, 等. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476. DOI: 10.16819/j.1001-7216.2022.210813.
|
[51] |
AGBNA G H D, ALIL A B, BASHIR A K, et al. Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress[J]. International Journal of Engineering Works, 2017, 4(4): 49. DOI: 10.5281/zenodo.555942.
|
[52] |
何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1. DOI: 10.3969/j.issn.1002-6819.2011.02.001.
|