• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
LI Yu, FAN Zhiwei, XU Shengguang, et al. Effects of Chemical Fertilizer Reduction Combined with Biochar on the Content of Related Substances and Enzyme Activity of NO Synthesis and AsA-GSH Cycle in Tobacco Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 70-79. DOI: 10.12101/j.issn.1004-390X(n).202304046
Citation: LI Yu, FAN Zhiwei, XU Shengguang, et al. Effects of Chemical Fertilizer Reduction Combined with Biochar on the Content of Related Substances and Enzyme Activity of NO Synthesis and AsA-GSH Cycle in Tobacco Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 70-79. DOI: 10.12101/j.issn.1004-390X(n).202304046

Effects of Chemical Fertilizer Reduction Combined with Biochar on the Content of Related Substances and Enzyme Activity of NO Synthesis and AsA-GSH Cycle in Tobacco Leaves

More Information
  • Received Date: April 16, 2023
  • Revised Date: August 04, 2024
  • Accepted Date: August 12, 2024
  • Available Online: September 03, 2024
  • Published Date: September 08, 2024
  • Purpose 

    To study the mitigation mechanism of reduced chemical fertilizer application combined with biochar on continuous cropping obstacles in tobacco, especially the effects on the enzymes and non-enzymatic substances methyl jasmonate (MeJA), S-nitrosothiols (SNOs), and so on in the nitrogen sources and (AsA-GSH) cycle of tobacco plants.

    Methods 

    Using Yunyan 87 as the test material, five fertilizer applications and biochar additions per plant were set, including fertilizer 30 g (T1), fertilizer 30 g+biochar 300 g (T2), fertilizer 45 g (T3); fertilizer 45 g+biochar 300 g (T4), fertilizer 60 g (T5). The effects of different treatments on the antioxidant system of tobacco were analyzed by measuring the contents of non-enzyme antioxidants and related enzyme activities in AsA-GSH cycle system, as well as the contents of MeJA and SNOs.

    Results 

    1) In T5 treatment, the nitrate reductase activity and nitric oxide (NO) content in tobacco leaves were 244.01 IU/L and 150.05 μmol/g, respectively; in contrast, T2 treatment significantly reduced by 15.50% and 17.53%, respectively. 2) In T5 treatment, SNOs content and S-nitrosoglutathione reductase (GSNOR) activity were 114.76 pg/mL and 147.42 IU/L, respectively; in contrast, T2 and T4 treatments significantly increased SNOs content by 9.72% and 17.78%, respectively, and significantly decreased GSNOR activity by 31.93% and 39.00%, respectively. 3) In T5 treatment, levels of AsA, GSH, ascorbate peroxidase, glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and MeJA in tobacco leaves were 266.04 μg/g, 75.03 ng/L, 66.14 ng/L, 162.77 ng/L, 17.66 ng/L, and 36.85 nmol/L, respectively; in contrast, T2 and T4 treatments significantly increased GR activity by 88.34% and 123.14%, respectively, and significantly increased MeJA levels by 6.90% and 17.26%, respectively.

    Conclusion 

    Reduced fertilizer application combined with biochar can decrease NO content in tobacco leaves under stress conditions. NO can regulate SNOs content, GSNOR activity, AsA-GSH cycle-related substances and enzyme activity, and synthesis of MeJA, to maintain redox balance, mitigate stress responses from continuous cropping obstacles and enhance tobacco resistance.

  • [1]
    闫新甫, 孔劲松, 罗安娜, 等. 近20年全国烤烟产区种植规模消长变化分析[J]. 中国烟草科学, 2021, 42(4): 92. DOI: 10.13496/j.issn.1007-5119.2021.04.014.
    [2]
    侯毛毛, 邵孝侯, 陈竞楠, 等. EM保水剂施用对烤烟的影响及其施用制度的优选研究[J]. 中国生态农业学报(中英文), 2016, 24(5): 628. DOI: 10.13930/j.cnki.cjea.151206.
    [3]
    张仕祥, 过伟民, 李辉信, 等. 烟草连作障碍研究进展[J]. 土壤, 2015, 47(5): 823. DOI: 10.13758/j.cnki.tr.2015.05.001.
    [4]
    王艳芳, 潘凤兵, 展星, 等. 连作苹果土壤酚酸对平邑甜茶幼苗的影响[J]. 生态学报, 2015, 35(19): 6566. DOI: 10.5846/stxb201402180284.
    [5]
    张亚琴, 陈雨, 雷飞益, 等. 药用植物化感自度作用研究进展[J]. 中草药, 2018, 49(8): 11. DOI: 10.7501/j.issn.02 53-2670.2018.08.032.
    [6]
    黄高峰, 王丽慧, 方云花, 等. 干旱胁迫对菊芋苗期叶片保护酶活性及膜脂过氧化作用的影响[J]. 西南农业学报, 2011, 24(2): 552. DOI: 10.16213/j.cnki.scjas.2011.02. 073.
    [7]
    张梦如, 杨玉梅, 成蕴秀, 等. 植物活性氧的产生及其作用和危害[J]. 西北植物学报, 2014, 34(9): 1916. DOI: 10.7606/j.issn.1000-4025.2014.09.1916.
    [8]
    孙佳平, 张福顺, 邳植, 等. 低温胁迫对甜菜抗氧化系统的影响[J]. 中国农学通报, 2022, 38(12): 26. DOI: 10.11924/j.issn.1000-6850.casb2021-0844.
    [9]
    毛佳昊, 熊晓辉, 卢一辰. 茉莉酸调控植物应对逆境胁迫作用的研究进展[J]. 生物加工过程, 2021, 19(4): 413. DOI: 10.3969/j.issn.1672-3678.2021.04.008.
    [10]
    FOTOPOULOS V, ZIOGAS V, TANOU G, et al. Involvement of AsA/DHA and GSH/GSSG ratios in gene and protein expression and in the activation of defence mechanisms under abiotic stress conditions[M]//ANJUM N A, CHAN M T, UMAR S. Ascorbate-glutathione pathway and stress tolerance in plants. Dordrecht: Springer, 2010.
    [11]
    任瑞芬, 李泽迪, 姜雪茹, 等. AsA-GSH抗氧化系统在超低温保存后牡丹花粉活力下降中的作用机制[J]. 植物生理学报, 2021, 57(7): 1517. DOI: 10.13592/j.cnki.ppj.2021.0004.
    [12]
    SUN D Q, LU X H, HU Y L, et al. Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana[J]. Scientia Horticulturae, 2013, 164: 484. DOI: 10.1016/j.scienta.20 13.10.011.
    [13]
    LANG D Y, YU X X, JIA X X, et al. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings[J]. Scientia Horticulturae, 2020, 266: 109287. DOI: 10.1016/j.scienta.2020.109287.
    [14]
    KARUPPANAPANDIAN T, MOON J C, KIM C, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms[J]. Australian Journal of Crop Science, 2011, 5(6): 709. DOI: 10.3316/informit.282079847301776.
    [15]
    ZHANG J, HUANG D J, WANG C L, et al. Recent progress in protein S-nitrosylation in phytohormone signaling[J]. Plant & Cell Physiology, 2019, 60(3): 494. DOI: 10.1093/pcp/pcz012.
    [16]
    刘苗苗. 大蒜根系浸提液对连作小型西瓜化感作用的初步研究[D]. 石河子: 石河子大学, 2014.
    [17]
    张悦. 茉莉酸甲酯及摩西球囊霉对提高草莓幼苗连作障碍抗性的作用[D]. 保定: 河北农业大学, 2014.
    [18]
    李小萌, 陈效民, 曲成闯, 等. 生物有机肥与减量配施化肥对连作黄瓜养分利用率及产量的影响[J]. 水土保持学报, 2020, 34(2): 309. DOI: 10.13870/j.cnki.stbcxb.20 20.02.044.
    [19]
    顾美英, 刘洪亮, 李志强, 等. 新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响[J]. 中国农业科学, 2014, 47(20): 4128. DOI: 10.3864/j.issn.0578-17 52.2014.20.021.
    [20]
    张志龙, 陈效民, 李小萌, 等. 生物质炭与化肥配施对连作黄瓜产量及肥料利用率的影响[J]. 土壤, 2021, 53(1): 47. DOI: 10.13758/j.cnki.tr.2021.01.007.
    [21]
    XIE Y J, MAO Y, LAI D W, et al. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance[J]. Journal of Experimental Botany, 2013, 64(10): 3045. DOI: 10.1093/jxb/ert149.
    [22]
    田华, 段美洋, 王兰. 植物硝酸还原酶功能的研究进展[J]. 中国农学通报, 2009, 25(10): 96. DOI: 10.11924/j.issn.1000-6850.2009-0248.
    [23]
    YAMASAKI H, SAKIHAMA Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Letters, 2000, 468(1): 89. DOI: 10.1016/S0014-5793(00)01203-5.
    [24]
    陈银萍, 柯昀琪, 杨志娟, 等. 铅胁迫下三叶鬼针草内源一氧化氮的生成及其对氧化损伤的缓解效应[J]. 植物科学学报, 2018, 36(2): 264. DOI: 10.11913/PSJ.2095-0837.2018.20264.
    [25]
    BEGARA-MORALES J C, SÁNCHEZ-CALVO B, CHAKI M, et al. Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs)[J]. Frontiers in Plant Science, 2016, 7: 152. DOI: 10.3389/fpls.2016.00152.
    [26]
    陈佳欣, 冯静怡, 李娟, 等. 生物炭与干旱胁迫对冬小麦根际土壤理化性质及细菌群落的影响[J]. 西北农业学报, 2023, 32(11): 1725. DOI: 10.7606/j.issn.1004-1389.2023.11.006.
    [27]
    吴巍, 赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010, 26(13): 75. DOI: 10.11924/j.issn.1000-6850.2010-1272.
    [28]
    KYAING S M, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用[J]. 生物技术进展, 2011, 1(3): 159.
    [29]
    闫丽娟. 生物炭对苹果根系及根区土壤硝酸盐代谢的影响[D]. 泰安: 山东农业大学, 2014.
    [30]
    钟雪梅, 朱义年, 刘杰, 等. 竹炭包膜对肥料氮淋溶和有效性的影响[J]. 农业环境科学学报, 2006, 25(增刊1): 154. DOI: 10.3321/j.issn:1672-2043.2006.z1.037.
    [31]
    高德才, 张蕾, 刘强, 等. 旱地土壤施用生物炭减少土壤氮损失及提高氮素利用率[J]. 农业工程学报, 2014, 30(6): 8. DOI: 10.3969/j.issn.1002-6819.2014.06.007.
    [32]
    张星, 张晴雯, 刘杏认, 等. 施用生物炭对农田土壤氮素转化关键过程的影响[J]. 中国农业气象, 2015, 36(6): 709. DOI: 10.3969/j.issn.1000-6362.2015.06.007.
    [33]
    BARROSO J B, VALDERRAMA R, CARRERAS A, et al. Quantification and localization of S-nitrosothiols (SNOs) in higher plants[M]//GUPTA K J. Plant nitric oxide: methods and protocols. New York: Springer, 2016.
    [34]
    BEGARA-MORALES J C, SÁNCHEZ-CALVO B, CHAKI M, et al. Protein S-nitrosylation and S-glutathionylation as regulators of redox homeostasis during abiotic stress response[M]//GUPTA D K, PALMA J M, CORPAS F J. Redox state as a central regulator of plant-cell stress responses. Cham: Springer International Publishing, 2016.
    [35]
    夏金婵. 植物亚硝基谷胱甘肽还原酶在胁迫反应中的作用研究[J]. 生物技术通报, 2018, 34(11): 36. DOI: 10.13560/j.cnki.biotech.bull.1985.2018-0514.
    [36]
    CHRISTINE R, M. CARME E, MAYKELIS C, et al. S-nitrosoglutathione reductase affords protection against pathogens in arabidopsis, both locally and systemically[J]. Plant Physiology, 2007, 143(3): 1282. DOI: 10.11 04/pp.106.091686.
    [37]
    LIU L M, YAN Y, ZENG M, et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock[J]. Cell, 2004, 116(4): 617. DOI: 10.1016/S0092-86 74(04)00131-X.
    [38]
    FEECHAN A, KWON E, YUN B W, et al. A central role for S-nitrosothiols in plant disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(22): 8054. DOI: 10.1073/pnas.0501456102.
    [39]
    DAHM C C, MOORE K, MURPHY M P. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria[J]. Journal of Biological Chemistry, 2006, 281(15): 10056. DOI: 10.1074/jbc.M51220 3200.
    [40]
    伊丽达娜·迪力夏提, 魏佳, 王曼, 等. 基于S-亚硝基化解析一氧化氮对哈密瓜采后抗坏血酸—谷胱甘肽循环的影响[J]. 食品与发酵工业, 2023, 49(8): 128. DOI: 10.13995/j.cnki.11-1802/ts.030137.:1-11.
    [41]
    ZIOGAS V, TANOU G, FILIPPOU P, et al. Nitrosative responses in citrus plants exposed to six abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2013, 68: 118. DOI: 10.1016/j.plaphy.2013.04.004.
    [42]
    NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249. DOI: 10.1146/annurev.arplant.49.1.249.
    [43]
    SINGH I, SHAH K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings[J]. Phytochemistry, 2014, 108: 57. DOI: 10.1016/j.phytochem.2014.09.007.
    [44]
    朱宏涛, 李江, 李元, 等. 激素类农药茉莉酸及其甲酯的植物生物活性及其在农业生产中的应用[J]. 农药, 2013, 52(8): 552. DOI: 10.16820/j.cnki.1006-0413.2013.08.002.
    [45]
    章崇玲, 曾国平, 陈建勋. 干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J]. 植物资源与环境学报, 2000, 9(4): 23. DOI: 10.3969/j.issn.1674-7895.2000.04.006.
    [46]
    张菊平, 张会灵, 张焕丽. 外源NO降低辣椒幼苗盐害的生理效应[J]. 北方园艺, 2020(22): 10. DOI: 10.11937/bfyy.20200381.
    [47]
    范树茂, 司国栋, 王飞菲, 等. 茉莉酸及其甲酯在农业上的应用研究进展[J]. 现代农药, 2019, 18(3): 1. DOI: 10.3969/j.issn.1671-5284.2019.03.001.
    [48]
    李红利, 孙振元, 赵梁军, 等. 茉莉酸类物质对植物生长发育及抗性的影响[J]. 中国农学通报, 2009, 25(16): 167. DOI: 10.11924/j.issn.1000-6850.2009-0859.
    [49]
    刘零怡, 于萌萌, 郑杨, 等. 采后一氧化氮处理调控番茄果实茉莉酸类物质合成并提高灰霉病抗性[J]. 食品科学, 2010, 31(22): 457. DOI: 10.7506/spkx1002-6630-20 1022103.
    [50]
    朱春权, 魏倩倩, 党彩霞, 等. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476. DOI: 10.16819/j.1001-7216.2022.210813.
    [51]
    AGBNA G H D, ALIL A B, BASHIR A K, et al. Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress[J]. International Journal of Engineering Works, 2017, 4(4): 49. DOI: 10.5281/zenodo.555942.
    [52]
    何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1. DOI: 10.3969/j.issn.1002-6819.2011.02.001.
  • Related Articles

    [1]QI Wenwen, LIANG Yijun. Effects and Mechanisms of Bitter Gourd Polysaccharide Combined with Aerobic Exercise on Glucose and Lipid Metabolism Disorders in Rats with Type 2 Diabetes Mellitus[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 54-62. DOI: 10.12101/j.issn.1004-390X(n).202306028
    [2]PANG Yiting, MA Fei. Effects and Mechanism of Cuscuta chinensis Polysaccharides on Improving Motor Ability in Rats Based on AMPK/PGC-1α Signaling Pathway[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(2): 53-59. DOI: 10.12101/j.issn.1004-390X(n).202306031
    [3]Yaoyao CHEN, Liangwen YAN, Zhicheng LIU, Jie YU, Chunyan JIANG, Jianrong CAI. Effects of Spraying Exogenous Nitric Oxide under High Temperature Stress on Physiological Characteristics of Phaseolus vulgaris L. in Recovery Growth Period[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(2): 290-297. DOI: 10.12101/j.issn.1004-390X(n).202207019
    [4]Ruigao LAN, Yijun LIANG. Effects of Ginsenoside CK on Anti-fatigue and Oxidative Stress of Skeletal Muscle in Exhaustive Swimming Rats[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(3): 491-496. DOI: 10.12101/j.issn.1004-390X(n).202109040
    [5]Meiling CHENG, Xin HUANG, Tongxin AN, Jiangping FAN, Jianbin LI, Congfang XI. Study on Anti-fatigue and Anti-oxidation Effects of Rose Anthocyanin in Mice[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(6): 956-961. DOI: 10.12101/j.issn.1004-390X(n).202004053
    [6]Mingye LI, Yue LI, Yupeng HAO, Zewei SUN, Qingzhen ZHONG. Effects of Glutamine Administration before Transportation on the Growth Performance, Hormone Level and Antioxidant Function of Broilers after Transportation Stress[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(5): 820-825. DOI: 10.12101/j.issn.1004-390X(n).202012079
    [7]Zelin LI, Qiuting WANG, Xiaoping FU, Dahai GU, Xuefeng WANG, Yuehong PU, Changrong GE, Jiangping FAN. Non-targeted Metabonomics Study of Epicatechin on Acute Lung Injury Induced by Lipopolysaccharide in BALB/c Mice[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(5): 852-861. DOI: 10.12101/j.issn.1004-390X(n).201909031
    [8]Sisi WANG, Chunyang HAN, Guangpei XU, Mengdi ZHANG, Cuiyan LIU. Protective Effect of Baihu Decoction on the Experimental Acute Heat Stressed Mice[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(2): 289-294. DOI: 10.12101/j.issn.1004-390X(n).201906034
    [9]Zhenzhen ZHU, Mingjin ZHANG, Jian ZHANG, Lianghua CHEN. The Effects of an Exogenous Nitric Oxide on the Physiological Characteristics in Females and Males of Populus deltoides Exposed to Pb Stress[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(3): 494-502. DOI: 10.12101/j.issn.1004-390X(n).201804036
    [10]Li ZHANG, Yongyan WANG, Yingxia WANG, Jianbin YIN, Mengqun CHENG, Xuan ZHANG. Anti-acute Lung Injury Activity of Gentiopicroside[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(3): 450-455. DOI: 10.12101/j.issn.1004-390X(n).201706020
  • Cited by

    Periodical cited type(17)

    1. 张霞,唐娟,曾佳莉,杜宇涛,胡成刚. 苗药翻白叶树乙酸乙酯部位化学成分研究. 江西化工. 2025(01): 67-70+75 .
    2. 邓洪燕,毛静春,毛建富,周琴,陶波,赵龙. 普洱茶中儿茶素研究进展. 农学学报. 2024(01): 83-89 .
    3. 耿筱,赵红光,刘露锦. 中药外敷联合红光仪照射治疗高龄压疮的临床研究. 实用中医内科杂志. 2024(02): 124-126 .
    4. 陈天阳,李鹏程,严佳,郑佳萍,金源源,成扬,王倩. 苍术酮通过调节Nrf2-NLRP3通路减轻LPS诱导的小鼠急性肺损伤实验研究. 中国中医急症. 2024(02): 219-222+226 .
    5. 谢小红,黎清现,魏洪发,刘娇,吴朝文. 表儿茶素对放射性口腔炎小鼠的抗炎和抗氧化应激作用. 医学信息. 2024(07): 89-92+109 .
    6. 张茂福,张志明,宋忠阳,张昺磊,沈雁云,刘叶元,李欣钰. 中药调控氧化应激防治急性肺损伤的研究进展. 中草药. 2024(09): 3190-3201 .
    7. 陈淑珍,许秋凤,王皇斌,黄莎莎,黄丽端,熊闽. 儿茶素减轻小鼠肺泡巨噬细胞炎症反应的作用及机制研究. 生物学杂志. 2024(06): 26-30 .
    8. 段志豪,金璨,邓颖,柳金浪,王颉,李世刚,周游. 基于网络药理学与实验验证探讨资木瓜治疗类风湿关节炎的作用机制. 中国中药杂志. 2023(18): 4852-4863 .
    9. 彭君,樊莹润,吴正豪,李泽林,艾媛媛,付晓萍,宋爽,范江平. 丽江山荆子表儿茶素抗辣木叶蛋白过敏作用. 现代食品科技. 2023(10): 1-8 .
    10. 卓小霞,段宏婷,闫媛聪,张晴,郝怡萌,王莉宁. 菟丝子中黄酮类成分的生物活性及体内代谢的研究进展. 华西药学杂志. 2023(06): 705-710 .
    11. 亓伟钰,李鑫,满荣勇,曹建中. 基于网络药理学及分子对接技术分析蠲痹汤加减治疗类风湿关节炎的作用机制. 中医药导报. 2022(04): 105-111 .
    12. 罗诗华,王逸轩,崔波,许宙,焦叶,程云辉. 纳米固相萃取剂分离纯化黄酮类化合物的研究进展. 食品与机械. 2022(05): 202-209 .
    13. 邵文博,李韬芝,于然,孙适然,袁淳晟,程志强. 运用数据挖掘总结中药外治治疗化疗相关手足综合征及其网络药理学分析. 中日友好医院学报. 2022(03): 175-177 .
    14. 刘丹,何燕伶,邱红燕,马莹. 高效液相色谱法同时测定化妆品中5种抗氧化成分. 日用化学工业. 2022(08): 858-862 .
    15. 吴海涛,陈玥,杨微,吴灵玉. 金荞麦HPLC条件优化及表儿茶素鉴定研究. 黑龙江八一农垦大学学报. 2022(04): 80-86+133 .
    16. 谢明杰,陈穗保. 基于PI3K/AKT信号通路探讨表儿茶素对口腔癌细胞的作用. 医学信息. 2022(15): 46-50 .
    17. 朱君,付立霞,支青,刘雄利,陈琳,田民义,王慧娟. 桑枝乙醇提取物通过NF-κB和MAPKs信号通路对LPS诱导RAW264.7细胞的抗炎作用. 中成药. 2022(11): 3648-3653 .

    Other cited types(6)

Catalog

    Article views (538) PDF downloads (34) Cited by(23)