• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Xingyang WU, Yifeng HU, Dongfang MA, et al. Identification and Characteristic Analysis of Wheat CesA Gene Family[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(2): 203-213. DOI: 10.12101/j.issn.1004-390X(n).202011007
Citation: Xingyang WU, Yifeng HU, Dongfang MA, et al. Identification and Characteristic Analysis of Wheat CesA Gene Family[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(2): 203-213. DOI: 10.12101/j.issn.1004-390X(n).202011007

Identification and Characteristic Analysis of Wheat CesA Gene Family

More Information
  • Received Date: November 08, 2020
  • Revised Date: September 21, 2021
  • Accepted Date: February 22, 2022
  • Available Online: March 02, 2022
  • Published Date: March 29, 2022
  • PurposeTo systematically identified and analyzed wheat cellulose synthase (CesA) gene family members, laying a theoretical foundation for further elucidating their biological functions.
    MethodsThe wheat CesA (TaCesA) gene family members were comprehensively identified on the whole wheat genome using bioinformatics methods. The phylogeny, chromosome position, and transcriptome of TaCesA genes were analyzed. Then, TaCesAs gene structure, conserved motifs, cis-elements, protein characteristics, and subcellular location were predicted. Moreover, CesA homologous genes between wheat and its subgenomic donors were compared.
    ResultsA total of 21 TaCesA genes were identified, divided into three groups (a, b and c). The TaCesAs contained multiple introns, but the untranslated region (UTR) structure of some genes was missing. The relationship between the TaCesA genes and their subgenome donors was conserved. The upstream of TaCesAs cover 45 cis-acting elements related to biological/abiotic stress, growth and development, and plant hormones, suggesting that these genes might be involved in the biological function respondings of wheat. The expression profile results showed the TaCesA genes were responsive to phosphorus deficiency, high temperature, low temperature, drought, stripe rust, powdery mildew, Fusarium graminearum, and other stresses.
    ConclusionThe wheat CesA genes have conserved gene structure and protein structure, and they play an essential role in wheat resistance to abiotic and biological stresses.
  • [1]
    DANIEL J, COSGROVE. Growth of the plant cell wall[J]. Nature Reviews. Molecular Cell Biology, 2005, 6(11): 850. DOI: 10.1038/nrm1746.
    [2]
    CARROLL A, SPECHT C D. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences[J]. Frontiers in Plant Science, 2011, 2(5): 5. DOI: 10.3389/fpls.2011.00005.
    [3]
    李春秀, 齐力旺, 王建华, 等. 植物纤维素合成酶基因和纤维素的生物合成[J]. 生物技术通报, 2005(4): 5. DOI: 10.3969/j.issn.1002-5464.2005.04.002.
    [4]
    DELMER D P. CELLULOSE BIOSYNTHESIS: exciting times for a dificult field of study[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 245. DOI: 10.1146/annurev.arplant.50.1.245.
    [5]
    TONY A, PENG L C, ANDREAS S, et a1. Molecular analysis of cellulose biosynthesis in Arabidopsis[J]. Science, 1998, 279: 717. DOI: 10.1126/science.279.5351.717.
    [6]
    张晓榕, 谭俊峰, 温曼晴, 等. 玉米CesA家族的系统鉴定及功能研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(2): 45. DOI: 10.13207/j.cnki.jnwafu.2019.02.006.
    [7]
    JULIE R P, YASUSHI K, WILLIAM E, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(22): 12637. DOI: 10.1073/pnas.93.22.12637.
    [8]
    TODD R. Higher plant cellulose synthases[J]. Genome Biology, 2000, 1(4): 1. DOI: 10.1186/gb-2000-1-4-reviews3001.
    [9]
    TAYLOR N G, HOWELLS R M, HUTTLY A K, et al. Interactions among three distinct CesA proteins essential for cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1450. DOI: 10.1073/pnas.0337628100.
    [10]
    THIERRY D, MICHAL J, ELIZABETH F C, et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15572. DOI: 10.1073/pnas.0706569104.
    [11]
    YAN C J, YAN S, ZENG X H, et al. Fine mapping and isolation of Bc7(t), allelic to OsCesA4[J]. Journal of Genetics and Genomics, 2007, 34(11): 1019. DOI: 10.1016/S1673-8527(07)60115-5.
    [12]
    付浩华, 张冬秀. 麦麸膳食纤维的提取[J]. 农产品加工, 2019(7): 45. DOI: 10.16693/j.cnki.1671-9646(X).2019.07.012.
    [13]
    张玉兰. 论纤维素对人体的功能[J]. 安徽农业科学, 2007, 35(11): 3351. DOI: 10.3969/j.issn.0517-6611.2007.11.111.
    [14]
    王振怡, 王金朋, 潘玉欣, 等. 拟南芥和水稻CesA基因家族的生物信息学分析[J]. 河南农业科学, 2015, 44(6): 13.
    [15]
    MICHAEL A, JANE R, THOMAS L, et al. Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data[J]. Genome Biology, 2018, 19(1): 111. DOI: 10.1186/s13059-018-1491-4.
    [16]
    THOMPSON J D, HIGGINS D G, GIBSON T J, et al. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22): 4673. DOI: 10.1093/nar/22.22.4673.
    [17]
    KUMAR S, STECHER G, TAMURA K, et al. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870. DOI: 10.1093/molbev/msw054.
    [18]
    HU L F, LIU S Q. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers[J]. Genetics and Molecular Biology, 2011, 34(4): 624. DOI: 10.1590/s1415-47572011005000054.
    [19]
    LI R, AN J P, YOU C X, et al. Identification and expression of the CEP gene family in apple (Malus×domestica)[J]. Journal of Integrative Agriculture, 2018, 17(2): 348. DOI: 10.1016/S2095-3119(17)61653-8.
    [20]
    CHOU K C, SHEN H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335. DOI: 10.1371/journal.pone.0011335.
    [21]
    BAILEY T L, BODEN M, BUSKE F A, et al. MEME Suite: tools for motif discovery and searching[J]. Nuclc Acids Research, 2009, 37: W202. DOI: 10.1093/nar/gkp335.
    [22]
    LETUNIC I, BORK P. 20 years of the SMART protein domain annotation resource[J]. Nucleic Acids Research, 2018, 46(D1): 493. DOI: 10.1093/nar/gkx922.
    [23]
    HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. Journal of Integrative Agriculture, 2017, 16(7): 1486. DOI: 10.1016/S2095-3119(16)61501-0.
    [24]
    ZHU Y X, YANG L, LIU N, et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber[J]. BMC Plant Biology, 2019, 19(1): 345. DOI: 10.1186/s12870-019-1953-1.
    [25]
    KROGH A, LARSSON B, HEIJNE V G, et a1. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes[J]. Journal of Molecular Biology, 2001, 305(3): 567. DOI: 10.1006/jmbi.2000.4315.
    [26]
    SIMON C L, IAN W D, ARENDALL W B, et al. Structure validation by Cα geometry: ψ and Cβ deviation[J]. Proteins, 2003, 50(3): 437. DOI: 10.1002/prot.10286.
    [27]
    HE Y Q, HUANG W D, YANG L, et al. Genome-wide analysis of ethylene-insensitive3 (EIN3/EIL) in Triticum aestivum[J]. Crop Science, 2020, 60: 2019. DOI: 10.1002/csc2.20115.
    [28]
    COLE T, ADAM R, LOYAL G, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3): 562. DOI: 10.1038/nprot.2012.016.
    [29]
    JIANG W Q, GENG Y P, LIU Y K, et al. Genome-wide identification and characterization of SRO gene family in wheat: molecular evolution and expression profiles during different stresses[J]. Plant Physiology and Biochemistry, 2020, 154: 590. DOI: 10.1016/j.plaphy.2020.07.006.
    [30]
    刘振东, 赵淑举, 蒋苏, 等. 植物纤维素合酶复合体组装与运输研究进展[J]. 植物生理学报, 2020, 56(9): 1757. DOI: 10.13592/j.cnki.ppj.2020.0019.
    [31]
    江元清, 凌毅, 赵武玲. 真核mRNA的3′非翻译区转录后水平调控作用研究进展[J]. 植物学通报, 2001, 18(1): 3. DOI: 10.3969/j.issn.1674-3466.2001.01.003.
    [32]
    刘娟娟, 汪惠丽. 植物中脱落酸对非生物胁迫的耐受性研究进展[J]. 安徽农业科学, 2017, 45(16): 11. DOI: 10.3969/j.issn.0517-6611.2017.16.004.
  • Related Articles

    [1]LIU Ailin, HOU Yanhong, YANG Wen, HE Chenggang, HUANG Heping, JIANG Hua. Morphological Characteristics of Pollen Grains in Nine Vicia Forages[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 141-148. DOI: 10.12101/j.issn.1004-390X(n).202309035
    [2]Lan LAN, Yushu ZHOU, Xiaofeng YAN, Yinghua ZHU, Dechuan WU, Chengyu WANG. Effects of Planting Density on Grain Dehydration Characteristics and Lodging Resistance of Summer Maize in Northern Anhui Plain[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(5): 827-834. DOI: 10.12101/j.issn.1004-390X(n).202203027
    [3]Piao CHANG, Zhengxian HUANG, Liping HE, Yan SUN. Study on the Determination of Maize Seed Vigor by Tetrazolium Staining Imagination[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(3): 547-552. DOI: 10.12101/j.issn.1004-390X(n).202010049
    [4]Xiukang WANG, Jinzhao MA, Yao SUN, Jingkuan SUN, Hongjun YANG, Xuejiang WANG, Faqi WANG, Yonggang WANG. Effect of a Novel Seaweed Fertilizer on the Growth and Yield of Maize[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(3): 524-531. DOI: 10.12101/j.issn.1004-390X(n).202006041
    [5]Chengyu WANG, Ziwei ZHU, Xin ZHANG, Yinghua ZHU, Xiaoyu LI, Beijiu CHENG. The Effects of Three Chemical Regulators on the Photosynthetic Characteristics, Filling Period and Grain Water Content of Summer Maize[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 591-595. DOI: 10.12101/j.issn.1004-390X(n).201905040
    [6]Jing AO, Yang LI, Xiaohui LIU, Xiaomei GAO. Study on the Colonization and Fermentation of Bacillus subtilis GX7 in Chicken Manure[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(5): 867-873. DOI: 10.12101/j.issn.1004-390X(n).201807021
    [7]Bo YAO, Pengfei HE, Min HUANG, Yixin WU, Xingyu LI, Yueqiu HE. A Study on the Environmental Adaptation of Pantoea agglomerans C3 Strain, a Causal Agent of Maize Top Rot Disease[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(2): 210-215. DOI: 10.12101/j.issn.1004-390X(n).201803022
    [8]Tongxin AN, Yuanman YANG, Feng ZHOU, Zhiwei FAN, Mengli CHEN, Jing LU, Bozhi WU. Effect of Maize and Potato Intercropping on Their Root Growth and Distribution[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(2): 363-370. DOI: 10.12101/j.issn.1004-390X(n).201504030
    [9]ZHAO Jinlong, FENG Jieshen, BAI Heling, LUO Bi, LIU Chao, TAN Yaling, TAN Xuelin, XU Jin. Mapping of QTLs Controlling Rice Grain Size[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(5): 747-755. DOI: 10.16211/j.issn.1004-390X(n).2017.05.001
    [10]REN Yuzhen, YANG Qinqin, LI Runrun, LYU Yuanyuan, SHI Xiaojing. Determination Colonization Ability of Endophytic Actinomycetes Ac10 from Artemisia argyi in Plants[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(2): 358-362. DOI: 10.16211/j.issn.1004-390X(n).2016.02.026
  • Cited by

    Periodical cited type(2)

    1. 贾姝,张俊涛,李喜升,赫英姿,于庭洪,赵翀,宋策. 柞蚕空胴病病原拮抗菌的分离、鉴定及防治效果研究. 微生物学报. 2023(02): 670-682 .
    2. 汤雨葳,于孟,叶建仁. Zn对解淀粉芽孢杆菌JK-JS8生物膜形成及拮抗能力的影响. 微生物学通报. 2022(10): 4134-4143 .

    Other cited types(2)

Catalog

    Article views (4090) PDF downloads (68) Cited by(4)