• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Siteng HE, Kun LI, Fangyan LIU, et al. The Relationship of the Soil Microbial and Enzymes Changes with Soil Nutrition Stoichiometry in Artificial Vegetation Restoration in Honghe Dry-Hot Valleys[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(6): 1073-1080. DOI: 10.12101/j.issn.1004-390X(n).201907036
Citation: Siteng HE, Kun LI, Fangyan LIU, et al. The Relationship of the Soil Microbial and Enzymes Changes with Soil Nutrition Stoichiometry in Artificial Vegetation Restoration in Honghe Dry-Hot Valleys[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(6): 1073-1080. DOI: 10.12101/j.issn.1004-390X(n).201907036

The Relationship of the Soil Microbial and Enzymes Changes with Soil Nutrition Stoichiometry in Artificial Vegetation Restoration in Honghe Dry-Hot Valleys

More Information
  • Received Date: July 16, 2019
  • Revised Date: September 09, 2020
  • Available Online: November 08, 2020
  • Published Date: November 29, 2020
  • PurposeThe relationship between soil chemical stoichiometry of nitrogen, phosphorus and potassium and soil microbial and enzymes in the artificial restoration of vegetation in Honghe dry-hot valley is explored. In order to provide theoretical basis and reference for the influence of different vegetation restoration patterns on soil characteristics in dry-hot valley.
    MethodThe relationship between soil chemical properties, enzymes and microbial of two pure plantations, Schleichera oleosa and Cassia siamea, and savanna with Woodfordia fruticosa as the main vegetation types in Honghe dry-hot valley, was analyzed by field sample investigation and indoor control experiments.
    Result There were significant differences in the contents of organic matter, total nitrogen, hydrolytic nitrogen, available phosphorus, available potassium, slow-acting potassium, protease, urease, bacteria and fungi between root system and non-root system soil of three communities (P<0.05), while there was no significant difference in the contents of actinomycetes between root system and non-root system soil of different vegetation communities (P>0.05). There was no significant difference in acid phosphatase content between three communities (P>0.05). The activity of root system soil was higher than that of non-root system soil in both artificial restoration vegetation communities and sparse shrubs and grasslands. Redundancy analysis (RDA) showed a positive correlation with bacteria, fungi and actinomycetes. Slow-acting potassium, available potassium and acid phosphatase were negatively correlated with only protease. The main factors driving community variation were slow-acting potassium, followed by available phosphorus, organic matter and acid phosphatase.
    ConclusionThe community environment and soil physicochemical properties can be improved by artificial vegetation restoration in Honghe dry-hot valley, compared with the savanna community, the soil nutrients of artificial vegetation restoration can be utilized more efficiently and the quantity and structure of soil microbial community can be improved, which provides a basis for revealing the material cycle of the forest ecosystem in the dry-hot valley.
  • [1]
    李昆, 刘方炎, 杨振寅, 等. 中国西南干热河谷植被恢复研究现状与发展趋势[J]. 世界林业研究, 2011, 24(4): 55. DOI: 10.13348/j.cnki.sjlyyj.2011.04.005.
    [2]
    唐国勇, 高成杰, 李昆. 植被恢复对干热河谷退化土壤改良的影响[J]. 生态学报, 2015, 35(15): 5157. DOI: 10.5846/stxb201312122939.
    [3]
    薛萐, 李鹏, 李占斌, 等. 不同海拔对干热河谷土壤微生物量及活性的影响[J]. 中国环境科学, 2011, 31(11): 1888.
    [4]
    纪中华, 李建增, 闫帮国, 等. 干热河谷典型区土壤功能对不同植被恢复措施的响应[J]. 水土保持学报, 2012(6): 249. DOI: 10.13870/j.cnki.stbcxb.2012.06.021.
    [5]
    赵新泉, 马艳娥. 退耕还林的生态作用及实施措施[J]. 林业资源管理, 1999, 28(3): 37. DOI: 10.13466/j.cnki.lyzygl.1999.03.010.
    [6]
    刘世梁, 傅伯杰, 陈利顶, 等. 卧龙自然保护区土地利用变化对土壤性质的影响[J]. 地理研究, 2002, 21(6): 682. DOI: 10.11821/yj2002060003.
    [7]
    WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677): 1629. DOI: 10.1126/science.1094875.
    [8]
    WOLFE B E, HUSBAND B C, KLIRONOMOS J N. Effects of a belowground mutualism on an aboveground mutualism[J]. Ecology Letters, 2005, 8(2): 218. DOI: 10.1111/j.1461-0248.2004.00716.x.
    [9]
    SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2010, 468(7320): 122. DOI: 10.1038/nature09548.
    [10]
    WALLENSTEIN M, ALLISON S D, ERNAKOVICH J, et al. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates[M]//SHUKLA G, YARMA A. Soil enzymology. Berlin Heidelberg: Springer-Verlag, 2011.
    [11]
    SPOHN M, CHODAK M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils[J]. Soil Biology and Biochemistry, 2015, 81: 128. DOI: 10.1016/j.soilbio.2014.11.008.
    [12]
    PABST H, GERSCHLAUER F, KIESE R, et al. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania[J]. Land Degradation & Development, 2016, 27(3): 592. DOI: 10.1002/ldr.2406.
    [13]
    TIAN L M, ZHAO L, WU X D, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland[J]. Science of The Total Environment, 2018, 622: 192. DOI: 10.1016/j.scitotenv.2017.11.331.
    [14]
    ZHOU Z H, WANG C K, JIANG L F, et al. Trends in soil microbial communities during secondary succession[J]. Soil Biology and Biochemistry, 2017, 115: 92. DOI: 10.1016/j.soilbio.2017.08.014.
    [15]
    岳琳艳, 郑俊强, 韩士杰, 等. 长白山温带森林不同演替阶段土壤化学性质及微生物群落结构的变化[J]. 生态学杂志, 2016, 34(9): 2590. DOI: 10.13292/j.1000-4890.2015.0234.
    [16]
    史新辰. 红河县干热河谷地区开发研究若干问题探讨[J]. 生态经济, 1989(4): 24.
    [17]
    NY/T 52—1987. 土壤水分测定法[S].
    [18]
    NY/T 1377—2007. 土壤pH的测定[S].
    [19]
    NY/T 1121.6—2006. 土壤有机质测定法[S].
    [20]
    NY/T 53—1987. 土壤全氮测定法[S].
    [21]
    LYT1228—2015. 森林土壤氮测定法[S].
    [22]
    NY/T 1121.7—2014. 土壤有效磷测定法[S].
    [23]
    NY/T 889—2004. 土壤速效钾和缓效钾测定法[S].
    [24]
    GB/T 14643.4—2009. 土壤微生物测定法[S].
    [25]
    刘旻霞, 王刚. 高寒草甸植物群落多样性及土壤因子对坡向的响应[J]. 生态学杂志, 2013, 32(2): 259. DOI: 10.13292/j.1000-4890.2013.0135.
    [26]
    苏宁虎. 森林枯落物的水文作用研究概况[J]. 陕西林业科技, 1984, 12(4): 85.
    [27]
    陈龙池, 廖利平, 汪思龙, 等. 根系分泌物生态学研究[J]. 生态学杂志, 2002(6): 57. DOI: 10.13292/j.1000-4890.2002.0106.
    [28]
    贺永华, 沈东升, 朱荫湄. 根系分泌物及其根际效应[J]. 科技通报, 2006(6): 761. DOI: 10.13774/j.cnki.kjtb.2006.06.008.
    [29]
    陈举鸣, 汤惠华. 土壤有机质对作物的营养作用[J]. 福建农业科技, 1989(5): 44.
    [30]
    陆景陵. 植物营养学[M]. 北京: 中国农业大学出版社, 2000.
    [31]
    HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant & Soil, 2001, 237(2): 173. DOI: 10.1023/a:1013351617532.
    [32]
    MOLLA M A Z, CHOWDHURY A A, ISLAM A, et al. Microbial mineralization of organic phosphate in soil[J]. Plant and Soil, 1984, 78(3): 39. DOI: 10.1007/bf02450372.
    [33]
    黎玉国, 刘光金. 土壤中钾的存在形态及缓效钾的测定[J]. 云南农业, 2014(1): 45. DOI: 10.3969/j.issn.1005-1627.2014.01.024.
    [34]
    詹媛媛. 旱生灌木根际及灌丛土壤氮素含量特征研究[D]. 兰州: 兰州大学, 2009.
    [35]
    吕忠贻, 李保国. 土壤学[M]. 北京: 中国农业出版社, 2006.
    [36]
    GARCÍA-RUIZ R, OCHOA V, HINOJOSA M B, et al. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems[J]. Soil Biology & Biochemistry, 2008, 40(9): 2137. DOI: 10.1016/j.soilbio.2008.03.023.
    [37]
    何斌, 温远光, 袁霞, 等. 广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J]. 林业科学, 2002, 38(2): 21. DOI: 10.11707/j.1001-7488.20020205.
    [38]
    KAMIMURA Y, HAYANO K. Properties of protease extracted from tea-field soil[J]. Biology and Fertility of Soils, 2000, 30(4): 351. DOI: 10.1007/s003740050015.
    [39]
    沈震, 武玉荷, 党鹏, 等. 黄土高原丘陵沟壑区2种起源油松林更新苗根际土壤酶活性和养分含量比较研究[J]. 西北林学院学报, 2019, 34(1): 19. DOI: 10.3969/j.issn.1001-7461.2019.01.03.
    [40]
    白雪娟, 曾全超, 安韶山, 等. 子午岭人工林土壤微生物生物量及酶活性[J]. 应用生态学报, 2018, 29(8): 2695. DOI: 10.13287/j.1001-9332.201808.001.
    [41]
    GOLDSTEIN A H, BAERTLEIN D A, MCDANIEL R G. Phosphate starvation inducible metabolism in lycopersicon esculentum: I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells[J]. Plant Physiology, 1988, 87(3): 716. DOI: 10.1104/pp.91.1.175.
    [42]
    左华清, 王子顺. 柑橘根际土壤微生物种群动态及根际效应的研究[J]. 生态农业研究, 1995, 3(1): 39.
    [43]
    刘建军, 陈海滨. 秦岭火地塘林区主要树种根际微生态系统土壤性状研究[J]. 水土保持学报, 1998(3): 52. DOI: 10.13870/j.cnki.stbcxb.1998.03.010.
    [44]
    ZHAO F Z, REN C J, HAN X H, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems[J]. Forest Ecology and Management, 2018, 427: 289. DOI: 10.1016/j.foreco.2018.06.011.
  • Related Articles

    [1]HUANG Die, LU Hongzhi, DING Rui, HUANG Heping, JIANG Hua. Effects of Intercropping Silage Corn with Green Manure Crops on Soil Physicochemical Properties and Microbial Communities[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202501008
    [2]DUAN Yipeng, TANG Aiping, WU Yongming, LI Liang, LI Ya, DENG Mi, LIU Yajun. Effects of Different Remediation Measures on Physicochemical Properties and Enzyme Activities of Cadmium- contaminated Paddy Soil[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(6): 160-168. DOI: 10.12101/j.issn.1004-390X(n).202403012
    [3]Chuqi LIU, Gaokun ZHAO, Xiaopeng DENG, Erdeng MA, Junying LI, Yi CHEN, Yonglei JIANG, Cong WANG. Effects of Continuous Cropping Time on Soil Nutrient, Microbial Biomass, and Extracellular Enzyme Stoichiometry Characteristics of Tobacco-planting Soil[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 494-502. DOI: 10.12101/j.issn.1004-390X(n).202204038
    [4]Zhengyu HE, Weiqing ZHOU, Liwei LIU, Zhaoxiang GUO, Yunhai MO, Huachao XU. Effect of Apriona germari on Blood Enzyme Activity and Intestinal Bacteria Count in Individuals with Diarrhea[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(3): 485-490. DOI: 10.12101/j.issn.1004-390X(n).202111001
    [5]Zhongkui LI, Yaru DING, Yinggang ZHOU, Aifen LING, Xiaoci LI, Yulan CHEN, Hongli LI, Yan WANG. Effect of Different Previous Crops on the Nutrient Content, Enzyme Activity and Bacterial Community Structure in Tobacco Growing Soil[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 708-716. DOI: 10.12101/j.issn.1004-390X(n).201909033
    [6]Junnan LIU, Zhuhua WANG, Qionglian WAN, Xingping XU, Fan SU, Yinfeng CAI, Hong CAI. Pathogen Identification of Raphanus sativus Phyllody Disease and the Expression Level of Key Enzyme Genes in GibberellinSynthesis and Metabolism Pathway[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 614-621. DOI: 10.12101/j.issn.1004-390X(n).201902029
    [7]Kang LIU, Jinzhao HE, Pengfei FENG, Huawei MA, Xu LUO. Effects of Feeding Frequency and Level on the Digestive Enzymes and Fat Metabolism Enzyme in the Hepatopancreas of Juvenile Leiocassis longirostris[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(5): 779-784. DOI: 10.12101/j.issn.1004-390X(n).201812039
    [8]MIN Qiang, KE Hanling, ZU Yanqun, QIN Li. Effects of Soil As on Cell Membrane Permeability and Antioxidant Enzymes Activities of Panax notoginseng[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(4): 767-771. DOI: 10.16211/j.issn.1004-390X(n).2016.04.029
    [9]QIN Xiaomin, ZHENG Yi, TANG Li, LONG Guangqiang. Effects of Nitrogen Application Rates on Rhizosphere Soil Enzyme Activity and Potential Nitrification in Maize and Potato Intercropping[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2015, 30(6): 886-894. DOI: 10.16211/j.issn.1004-390X(n).2015.06.010
    [10]LIU Tao, HE Xiahong, LI Chengyun, SUN Ting, ZHAO Juan, ZHU Youyong. Effects of Low Temperatures on the Protective Enzyme Activity of Rice at Booting Stage[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2015, 30(1): 25-29. DOI: 10.16211/j.issn.1004-390X(n).2015.01.005
  • Cited by

    Periodical cited type(4)

    1. 阮长明,王猛,孙永玉,杜寿康,唐国勇,张春华,欧朝蓉,罗孔. 金沙江流域干热河谷土壤肥力特征及其影响因素. 土壤通报. 2024(01): 93-101 .
    2. 欧汉彪,王丰胜,韦铄星,吴建律,高风,韦秋思,李成星,郭宏祥,涂茂粟. 桂西北干热河谷区不同林龄香合欢天然次生林土壤理化性质分析. 广西林业科学. 2023(03): 297-304 .
    3. 阮长明,唐国勇,杜寿康,张春华,欧朝蓉,罗孔,田瑞杰,王猛,孙永玉. 金沙江干热河谷不同海拔土壤碳氮磷化学计量和酶活性研究. 西南农业学报. 2023(11): 2464-2472 .
    4. 王凯悦,张仲富,王好才,展鹏飞,宋维峰,陆梅,王行. 哈尼梯田传统耕作方式下的水稻土壤微生物多样性及功能特征分析. 西南林业大学学报(自然科学). 2022(02): 56-66 .

    Other cited types(4)

Catalog

    Article views (1841) PDF downloads (9) Cited by(8)