植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠生长、血液生化及肠道组织结构的影响
Effect of Arginine Supplementation on the Growth, Blood Biochemical Parameters and Intestinal Histology in Asian Red-tailed Catfish (Hemibagrus wyckioides) Fed with Diets of Plant Protein Replaced Fish Meal
-
牛角瓜(Calotropis gigantea L.)属龙胆目(Gentianales)萝藦科(Asclepiadaceae)牛角瓜属(Calotropis)直立灌木。主要分布在非洲和亚洲的热带亚热带地区,国内主要分布在云南、四川、广西和广东等省区[1]。牛角瓜的种毛纤维纺织的面料既具有丝绸的滑质感,又有类似棉织物的透气性和舒适感[2],废弃后还能自然降解,是一种绿色、生态及环保的高档纺织原料,具有广泛应用前景[3]。同时,牛角瓜纤维具有很好的吸油性,可以作为天然的污水净化剂[4-5];牛角瓜全株都含有丰富的药用成分,具有抗菌[6]、消炎[7]、驱虫[8]及止痛[9]等作用;对癌症[10]、发烧[11]、腹泻[12]及高血压[13]等疾病具有显著的疗效。牛角瓜含烷烃等类石油成分,从而被誉为“石油植物”[14];牛角瓜对干热河谷地区、盐碱地、沙滩等生态环境瘠薄脆弱地区具有很强的适应性[15],可以在无法农耕栽培的荒山荒坡进行大规模种植,是防止水土流失和土地沙漠化的先锋树种。国内的牛角瓜基本为野生种,其资源数量少,缺乏优良品种,不足以满足商业化开发利用。因此,牛角瓜优良品种的培育和大规模的种植势在必行。
牛角瓜的繁殖方法主要有扦插、组织培养及种子繁殖。扦插容易受母体材料、季节和气候的限制,不宜进行大规模生产。组织培养是牛角瓜短期内大量增殖最有效的途径,但其相关研究报道较少。ROY等[16-17]和李克烈等[18]对牛角瓜的愈伤组织诱导及植株再生进行了研究;孙健[19]以牛角瓜叶片、茎段和下胚轴等为起始材料研究表明:牛角瓜组织对激素不敏感,很难从愈伤途径分化产生再生芽。因此,愈伤途径不是牛角瓜快速扩繁的最佳选择。唐军荣等[20]以牛角瓜的茎尖为外植体进行离体快繁,对优良单株扩繁比较合适,但由于外植体表面有一层厚厚的灰白色绒毛,加之微生物容易通过乳汁器进入植物体内部,使内生菌数量增多。以这些材料为外植体消毒困难,污染率及死亡率较高[21],而且还会受季节的限制,不利于优良品种的培育和快速扩繁。与其他外植体相比,种子具有耐表面消毒、储存时间长和方便携带等优点,是组织培养快速获取无菌外植体的理想材料,也是遗传转化法培育优良品种时获取幼嫩外植体的最佳材料。但成熟的牛角瓜种子萌发不均一,萌发周期长,不利于牛角瓜无菌苗的获取,而牛角瓜种子萌发相关研究尚未报道其萌发不均一的原因。此外,牛角瓜是木本植物,大多数木本植物组培过程更适合以低盐的WPM为基本培养基[22],但针对牛角瓜还没有相关研究。因此,本研究以牛角瓜种子为材料进行无菌萌发,进一步以获得的无菌苗带芽茎段为外植体开展牛角瓜组培快繁技术研究,旨在为牛角瓜快速获取无菌苗及短期内大量扩繁提供参考。
1. 材料与方法
1.1 试验材料
牛角瓜完全成熟的种子和未完全成熟(花落后约35 d)的种子,于2016年6月采自云南省红河州红河县大羊街乡牛角瓜种植示范基地。牛角瓜果实成熟期大约40 d,单果平均种子数为113粒,千粒重3.753 g,种子平均长度0.61 cm,平均宽0.33 cm。
1.2 研究方法
1.2.1 牛角瓜种子的无菌播种
(1)成熟种子机械处理:取适量的牛角瓜种子,在无菌水中浸泡24 h后,75%的乙醇消毒5 min,无菌水洗3次,然后用0.1%的升汞消毒15 min,无菌水洗5次,用无菌剪刀将种子种皮剪破。无菌滤纸吸干表面液体,播种于1/2 MS培养基中,接种完后分成两组,每组10瓶,每瓶10粒种子,分别在光照和黑暗条件下培养。培养温度为(28±2)℃;光照强度30 μmol/(m2·s),光照时间16 h/d。从种子萌发日起,逐日统计种子萌发数量,最后统计种子的萌发率与发芽指数。
(2)成熟种子直接播种:消毒[方法同(1)]后,无菌滤纸吸干之后直接播种于1/2 MS培养基中。接种完后分成两组,每组10瓶,每瓶10粒种子,分别在光照和黑暗条件下培养[方法同(1)]。从种子萌发日起,逐日统计种子萌发数量,最后统计种子的萌发率与发芽指数。
(3)未成熟牛角瓜种子播种:取未完全成熟的牛角瓜果实(花落后约35 d),用自来水将表面冲洗干净,75%乙醇消毒5 min,无菌水洗2次,0.1%升汞消毒15 min,无菌水洗3次,去掉果皮。种子接种于1/2 MS培养基中,每瓶接10粒种子,10个重复。光照培养 [方法同(1)],从萌发日起,逐日统计种子萌发数量,最后统计种子的萌发率与发芽指数。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
式中,Gt为第t天种子发芽数;Dt为相应的时间,d。
1.2.2 牛角瓜丛生芽诱导
当无菌苗长到3~5 cm时,去掉无菌苗的根和叶片,以每一个带芽的茎段为1个外植体,接种到增殖培养基中(表1)。以MS和WPM为基本培养基,添加不同质量浓度的6-BA、NAA和TDZ,其中6-BA的质量浓度为0.5、1.0、2.0和3.0 mg/L,NAA的质量浓度为0.2 mg/L,TDZ的质量浓度为0.5、1.0 mg/L。所有培养基都添加30 g/L的蔗糖,5.6 g/L的琼脂,pH为5.8。试验设16个处理,每个处理4瓶,3次重复,每瓶接种5个外植体。外植体接种后,置于(28±2)℃,光照12 h/d的条件下培养。35 d后统计外植体的芽诱导率和平均芽数。
表 1 不同培养基对丛生芽诱导的影响(mean±SE)Table 1. The effects of different media on the axillary bud inductionNo. 基本培养基
basal mediumρ/(mg·L−1) 芽诱导率/%
rate of bud induction平均芽数/个
average number of buds芽生长情况
growth situation of buds6-BA NAA TDZ 1 MS 1 — — 95±3.04 cd 3.5±1.1 de 芽健壮,数量少 2 MS 2 — — 100 d 4.9±0.9 f 芽数量多,健壮,长势好 3 MS 3 — — 100 d 4.3±0.68 f 芽节间缩短,生长慢 4 MS 0.5 0.2 — 97.5±2.65 cd 3.51±1.04 de 基部有少量愈伤,芽不整齐 5 MS 1 0.2 — 97.5±2.65 cd 4.2±0.96 ef 基部有愈伤,芽不整齐 6 MS 2 0.2 — 100 d 4.32±0.57 f 基部有愈伤,芽脆弱,茎尖枯死 7 MS — 0.2 0.5 25±3.04 ab 1.1±0.14 a 芽数量过少,有根和愈伤形成 8 MS — 0.2 1 30±3.26 b 1.05±0.21 a 芽数量过少,有根和愈伤形成 9 WPM 1 — — 90±3.26 c 1.9±0.33 b 芽健壮,数量少 10 WPM 2 — — 95±3.25 cd 1.92±0.38 b 芽健壮,数量少 11 WPM 3 — — 97.5±2.65 cd 3.17±1.34 cd 芽瘦弱,生长情况不佳 12 WPM 0.5 0.2 — 95±3.25 cd 1.9±0.64 b 芽数量少,生长情况不佳 13 WPM 1 0.2 — 97.5±3.65 cd 2.3±0.67 b 基部有愈伤,长势不佳 14 WPM 2 0.2 — 100 d 2.6±0.64 bc 基部有愈伤,生长情况差 15 WPM — 0.2 0.5 20±2.31 a 1.02±0.07 a 芽数量过少,有根和愈伤形成 16 WPM — 0.2 1 27.5±3.21 ab 1.07±0.09 a 芽数量过少,有根和愈伤形成 注:同列数值间不同小写字母表示差异显著(P<0.05);下同。
Note: Values with different lowercase letters in each column mean significant difference at P<0.05; the same as below.芽诱导率=(诱导出芽的外植体数/总接种的外植体数)×100%;
平均芽数=总芽数/长芽的外植体数。
1.2.3 牛角瓜无菌苗生根诱导
丛生芽长到3~5 cm后,选择长势良好,大小均匀的丛生芽接到生根培养基(表2)中进行不定根诱导,以1/2 MS和WPM为基本培养基,添加不同质量浓度的IBA (0.05、0.15和0.25 mg/L),以不加激素的1/2 MS和WPM为对照组。试验设8个处理,每个处理4瓶,3个重复,每瓶5个外植体。培养基中添加琼脂5.6 g/L,蔗糖20 g/L,pH 5.8。培养温度(28±2)℃,光照12 h/d。从开始生根起,每天记录牛角瓜生根情况,30 d后统计生根率及平均根数。
表 2 不同培养基对牛角瓜生根的影响(mean±SE)Table 2. The effects of different media on rooting induction of C. gigantea编号
No.基本培养基
basal mediumρ (IBA)/(mg·L−1) 根诱导率/%
rate of root induction平均根数/条
average root number平均根长/cm
average root length根系生长情况
growth situation of roots1 1/2 MS — 90.5±3.95 a 5.4 1.8 根部有愈伤组织,根粗 2 1/2 MS 0.05 93.9±3.53 ab 6.3 2.1 根部有少量愈伤组织,根脆弱 3 1/2 MS 0.15 98.6±2.19 ab 7.9 2.8 根部有少量愈伤组织,根脆弱 4 1/2 MS 0.25 100 b 7.6 2.7 根部有少量愈伤组织,根脆弱 5 WPM — 91.1±3.55 a 9.3 2 根较细,出根不整齐 6 WPM 0.05 95.8±2.74 ab 10.2 2.8 根系均匀,出根整齐 7 WPM 0.15 100 b 11.6 3.2 根系均匀,出根整齐 8 WPM 0.25 100 b 18 2.7 根数量多、太细 生根率=(生根的芽数/总接种的芽数)×100%;
平均根数=总根数/总生根的芽数。
1.2.4 牛角瓜炼苗及移栽
生根结束后,将牛角瓜移到温室,松开瓶盖炼苗1周。炼苗结束后洗去牛角瓜基部培养基,用300倍多菌灵消毒10 min后晾干多余的水分。以不同基本培养基为标准将牛角瓜分成两组移栽,栽后淋足定根水,温度保持在25~32 ℃之间,湿度保持在70%左右。基质配比为V草炭土∶V珍珠岩∶V蛭石∶V椰糠=4∶3∶2∶1,移栽前用1%的高锰酸钾溶液对基质消毒,然后用塑料布覆盖1周后揭开。移栽30 d后统计牛角瓜各组的成活率。
成活率=(成活苗数/移栽总苗数)×100%。
1.3 数据处理
数据使用Excel 2013和SPSS 17中的ANOVA进行统计分析。
2. 结果与分析
2.1 牛角瓜种皮和光照对种子萌发的影响
牛角瓜未成熟种子萌发周期为5 d,萌发率为100%,发芽指数为30.3。剪破种皮的成熟种子萌发周期为5 d,萌发率98%,发芽指数为29.6,无菌苗如图1a所示。不剪破种皮的成熟种子萌发持续大约1个月且萌发率只有74%,发芽指数为8.6。结果分析表明:光照对种子萌发没有显著影响(P>0.05),牛角瓜未完全成熟种子与剪破种皮的成熟种子在萌发率与发芽指数之间都没有显著差异,而与未剪破种皮的成熟种子之间存在极显著差异(图2)。结合不同处理组的种子萌发结果可知:成熟牛角瓜种皮阻碍种子萌发,光照对种子萌发没有影响。
图 2 不同播种条件下种子的萌发率和发芽指数注:1. 未成熟种子光照;2. 成熟种子剪破种皮并光照处理;3. 成熟种子未剪破种皮并光照处理;4. 成熟种子剪破种皮并黑暗处理;5. 成熟种子未剪破种皮并黑暗处理。Figure 2. The seed germination rate and germination index in different sowing conditionsNote: 1. immature seeds under light; 2. mature seeds with broken seed coat under light; 3. mature seeds with complete seed coat under light; 4. mature seeds with broken seed coat under dark; 5. mature seeds with complete seed coat under dark.2.2 不同培养基对牛角瓜丛生芽诱导的影响
牛角瓜带芽茎段在接种后的3周内生长缓慢,之后为快速生长期,40 d左右即可进行继代培养。用不同基本培养基、不同种类及质量浓度的激素对牛角瓜丛生芽进行诱导可知: WPM基本培养基和MS基本培养基的诱导率没有显著差异,而平均芽有显著差异(表1)。相同激素条件下MS培养基中的平均芽明显高于WPM培养基中的平均芽,而且芽更健壮。对所添加的植物激素,只添加低质量浓度的6-BA时,对丛生芽诱导有明显的促进作用,诱导的丛生芽比较整齐、健壮,当MS培养基中添加2 mg/L 6-BA时,诱导率达100%,平均芽为4.9 (图1b);当6-BA质量浓度高于3 mg/L时,丛生芽节间缩短,苗丛密集,无效苗较多。添加TDZ时,外植体生长缓慢,且有根和愈伤组织生成,增殖系数最高只有1.1。当诱导培养基里添加NAA之后,苗基部愈伤组织较多,芽不整齐,茎段较脆弱,有部分带芽茎段继代之后丧失诱导能力。结合外植体的增殖系数,再生率和丛生芽的长势等综合评价,MS+2.0 mg/L 6-BA+5.6 g/L琼脂+30 g/L蔗糖是牛角瓜丛生芽诱导的最适培养基。
2.3 不同培养基对牛角瓜丛生芽生根的影响
牛角瓜在不同培养基中的生长情况如下:两种基本培养基在生根诱导率上没有显著差异(P>0.05),在基本培养基相同的情况下,添加不同浓度的IBA对牛角瓜生根具有显著的促进作用(表2)。其中在没有添加激素的1/2 MS培养基中诱导的根,其根系较短粗且愈伤化,移栽过程中极易脱落和腐烂。在1/2 MS培养基中添加不同浓度的IBA使根系变细,但大部分芽基部仍然存在少量的愈伤组织,移栽过程中极易脱落,成活率较低。在没有添加激素的WPM培养基中,牛角瓜的基部无愈伤组织形成,根系比较细且分枝多。但与添加了不同浓度IBA的WPM培养基相比,添加适当浓度的IBA可以加快生根过程,增加生根的数量以及使出根整齐。其中,在WPM培养基中加0.15 mg/L IBA时,诱导率达100%,平均根数为11.6条,平均主根长3.2 cm,根系均匀(图1c)。IBA质量浓度超过0.15 mg/L时,根数增加,但根系太细。结合牛角瓜生根时间、生根数量、平均根长、根诱导率及根的脆弱程度综合评价可知,牛角瓜较适的生根诱导培养基为WPM+0.15 mg/L IBA+5.6 g/L琼脂+20 g/L蔗糖。
2.4 无菌苗移栽
经过炼苗、移栽后,以WPM为基本培养基的牛角瓜成活率达90% (图2d),以1/2 MS为基本培养基的牛角瓜成活率为60%。
3. 讨论
种子的休眠主要分为生理休眠和物理休眠[23]。生理休眠主要是由种子的胚发育不完全而造成的休眠,需要后熟时间才能萌发,很难在播种后短期内大量萌发,而牛角瓜未完全成熟的种子和剪破种皮的成熟种子均能在短期内快速萌发。由此可知:牛角瓜种子不存在生理休眠过程。物理休眠主要是种皮的透性障碍或机械障碍[24]。透性障碍是种子成熟脱水时形成不透水层使种子发生休眠,在不透水层形成之前种子不存在物理休眠[25-26]。本研究发现:牛角瓜未完全成熟的种子和剪破种皮的种子能在短时间内大量萌发,其萌发率和发芽指数之间都无显著性差异,而与未剪破种皮的成熟牛角瓜之间有显著性差异。所以,成熟的牛角瓜种子萌发率低主要是受种皮透性障碍的影响,是牛角瓜萌发率低和萌发周期长的主要原因,解决种皮透性障碍是提高萌发率最有效的途径之一。
关于破除种皮对种子萌发影响的方法主要有物理法、化学法和生物法。罗瑛等[27]和连洁琼[28]的研究表明:物理法中的机械处理是目前最直接、最有效的方法之一。该研究以机械法将种皮剪破,在短时间内获得大量的无菌苗。此外,El-KEBLAWY[29]研究发现:光照能打破种子休眠,促进萌发。本研究发现:在光照与黑暗条件下培养的种子萌发率之间没有显著差异,说明光照对牛角瓜种子萌发没有显著促进作用,其种子休眠主要由种皮引起。
植物生长调节剂是培养基中的关键性物质,对植物组织培养起着决定性作用。同一植物在各个生长阶段所需的植物生长调节剂种类及其浓度都有很大的差异。因此,要根据组织培养的目的、材料的种类及生长情况来确定植物生长调节剂的种类和浓度[30]。植物组织培养中的生长调节物质主要有细胞分裂素和生长素,在木本植物丛生芽诱导过程中,6-BA和TDZ应用更广泛[31]。所以,本研究采用6-BA和TDZ两种细胞分裂素,结果表明:在添加了TDZ的培养基中丛生芽诱导率低,生长速度慢,还有大量愈伤组织和根的形成,其原因可能是TDZ同时具有生长素和细胞分裂素双重功能有关[32]。6-BA对牛角瓜丛生芽诱导促进作用随浓度增加而先升高后降低,最适质量浓度为2.0 mg/L,这种现象与樱桃(Prunus avium)茎尖培养研究结果[33]一致。前人相关研究采用诱导丛生芽的培养基都添加不同浓度的NAA,但本研究发现添加不同浓度的NAA之后,丛生芽基部形成愈伤组织较多,丛生芽脆弱,有部分芽在继代时散失再生能力,继代过程中诱导率低,原因可能与NAA具有诱导愈伤组织产生有关[34]。
选择基本培养基时,除根据待培养植物的基因型外,通常应考虑培养基的种类、总离子浓度、总氮水平及氮源种类与比例、钙和氯化物的含量等[35-36]。培养过程应以培养阶段和培养目的选择合适的基本培养基[37]。本研究发现:丛生芽诱导过程中MS明显优于WPM。生根过程中以1/2 MS为基本培养基会使大部分无菌苗根部有愈伤组织生成,移栽成活率只有60%,与ROY等[17]的研究结果一致,主要原因可能是基部愈伤组织形成,影响根与芽之间维管组织的形成。以WPM为基本培养基的牛角瓜基部无愈伤组织形成,移栽成活率高。这与马缨杜鹃(Rhododendron delavayi)[38]和牡丹(Paeonia suffruticosa)[39]等木本植物的研究结果一致。
本研究采用机械破壳法处理,在短期内获得大量的牛角瓜无菌苗,为遗传转化的研究提供良好材料。同时开展牛角瓜组培快繁技术研究,为牛角瓜组培快繁不同生长阶段找到合适的基本培养基和植物生长调节剂,降低了牛角瓜诱导过程中的基部愈伤化程度,解决了继代过程中成活率低、根易断裂及移栽成活率低等问题,为牛角瓜商业化开发利用提供了技术支撑。
-
图 1 植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠肠道组织形态的影响
注:FM、25% I和25% II组中肠组织结构正常;50% I和50% II组中肠组织有少量损伤,箭头所示处肠道褶皱有破裂迹象,杯状细胞增多。
Figure 1. Effect of arginine supplementation based on the experimental diets with plant protein replaced fish meal on the intestinal histology in Asian red-tailed catfish (H. wyckioides)
Note: FM, 25% I and 25% II are normal intestine tissue structure; 50% I and 50% II intestine tissue structures have a little damaged, the arrow showed rupture of intestinal folds or increasing goblet cells.
表 1 试验饲料配方及营养成分
Table 1 Formulation and proximate composition of the experimental diets
原料组成/% ingredient composition 饲料 diets FM 25% I 25% II 50% I 50% II 1鱼粉fish meal 56 42 42 28 28 发酵豆粕fermented soybean meal 0 9 9 17 17 豆粕soybean meal 0 6 6 12 12 小麦蛋白粉wheat gluten 0 3.7 3.7 8 8 木薯淀粉tapioca starch 15 15 15 15 15 α-淀粉α-starch 6 6 6 6 6 鱼油fish oil 3.5 4.3 4.3 5.2 5.2 卵磷脂lecithin 1.5 1.5 1.5 1.5 1.5 氯化胆碱choline chloride 1 1 1 1 1 微晶纤维素cellulose microciystalline 12.5 7 7 1.8 1.8 磷酸二氢钙monocalcium phosphate 1 1 1 1 1 精氨酸arginine 0 0 1.5 0 1.5 谷氨酸glutamic 1.5 1.5 0 1.5 0 2矿物质预混料mineral premix 1 1 1 1 1 3维生素预混料vitamin premix 1 1 1 1 1 4营养组成/% nutrition composition 粗蛋白crude protein 44.407 44.056 43.325 44.129 44.083 粗脂肪crude lipid 9.564 9.500 9.275 9.142 8.866 灰分ash 6.403 7.053 7.113 6.865 6.989 精氨酸Arg 1.814 1.904 3.328 1.806 3.242 注:1. 美国白鱼粉,美国进口,粗蛋白质含量72.37%,粗脂肪含量11.22%;2. 矿物质预混(mg/kg饲料):氟化钠,1;碘化钾,0.4;六水氯化钴,25;五水硫酸铜,5.0;硫酸亚铁,40;硫酸锌,25;硫酸锰,30;七水硫酸镁,600;磷酸二氢钙,1 500;氯化钠,50;沸石粉,7 725;3. 维生素预混(mg/kg饲料):维生素B1,25;维生素B2,45;维生素B6,20;维生素B12,0.1;维生素K3,10;肌醇,800;泛酸,60;烟酸,200;叶酸,20;生物素,1.20;醋酸视黄醇,32;维生素H3,5;α-生育酚,120;抗坏血酸,2 000;乙氧喹,150;4. 营养组成为实测值。
Note: 1. The white fish meal of the United States: crude protein content of 72.37%, crude fat content of 11.22%; 2. mineral premix (mg/kg diet): NaF, 1; KI, 0.4; CoCl2·6H2O, 25; CuSO4·5H2O, 5.0; FeSO4·H2O, 40; ZnSO4·H2O, 25; MnSO4·H2O, 30; MgSO4·7H2O, 600; Ca(H2PO4)2·H2O,1 500; NaCl, 50; zeolite, 7 725; 3. vitamin premix (mg/kg diet): vitamin B1, 25; vitamin B2, 45; vitamin B6, 20; vitamin B12, 0.1; vitamin K3,10; inositol, 800; pantothenic acid, 60; niacin acid, 200; folic acid, 20; biotin, 1.20; retinal acetate, 32; cholecalciferol, 5; α-tocopherol, 120; ascorbic acid, 2 000; ethoxyquin, 150; 4. The nutrition composition was measured value.表 2 试验饲料氨基酸组成(% 干物质)
Table 2 Amino acid contents of the experimental diets (% dry matter)
氨基酸含量
amino acid contents饲料 diets FM 25% I 25% II 50% I 50% II 必需氨基酸 essential amino acid 精氨酸 arginine 1.885 1.855 3.349 1.814 3.242 组氨酸 histidine 0.696 0.701 0.704 0.702 0.704 缬氨酸 valine 1.430 1.417 1.415 1.387 1.388 苯丙氨酸 phenylalanine 1.238 1.257 1.259 1.283 1.269 亮氨酸 leucine 2.026 2.216 2.199 2.186 2.168 异亮氨酸isoleucine 1.220 1.253 1.249 1.215 1.235 苏氨酸 threonine 1.056 1.224 1.225 1.194 1.184 蛋氨酸 methionine 0.631 0.598 0.610 0.556 0.563 赖氨酸 lysine 2.540 1.895 1.897 1.838 1.838 色氨酸 tryptophan 0.357 0.370 0.362 0.370 0.362 非必需氨基酸nonessential amino acid 天冬氨酸aspartic 1.842 1.762 1.742 1.751 1.692 丝氨酸 serine 1.213 1.279 1.278 1.315 1.262 谷氨酸 glutamic 5.335 5.298 3.634 5.329 3.619 丙氨酸 alanine 4.780 5.093 5.091 5.125 5.102 甘氨酸 glycine 4.358 4.082 4.164 4.005 3.922 酪氨酸 tyrosine 2.447 2.264 2.306 2.409 2.337 脯氨酸 proline 1.547 1.568 1.607 1.640 1.574 表 3 植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠生长性能的影响
Table 3 Effect of arginine supplementation based on the experimental diets with plant protein replaced fish meal on the growth in Asian red-tailed catfish (H. wyckioides)
指标
index饲料diets FM 25% I 25% II 50% I 50% II 存活率/% survival rate 96.00±4.000 94.67±2.309 93.33±8.327 88.00±10.583 96.00±4.000 特定生长率/(%·d−1)
specific growth rate2.96±0.144 a 2.56±0.032 ab 2.66±0.036 ab 2.42±0.147 b 2.50±0.120 ab 采食量/g feed intake 16.68±0.388 a 18.03±0.482 ab 18.12±0.168 ab 18.96±0.967 b 17.27±0.786 a 料肉比 feed convensation rate 1.59±0.029 a 2.04±0.120 ab 1.83±0.060 ab 2.21±0.198 b 1.95±0.148 ab 注:同行不同小写字母数值间差异显著(P < 0.05);下同。
Note: Different lowercase in the same row are significantly different from each other (P < 0.05); the same as below.表 4 植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠体近似成分的影响
Table 4 Effect of arginine supplementation based on the experimental diets with plant protein replaced fish meal on the proximate composition in Asian red-tailed catfish (H. wyckioides)
% 近似成分
proximate composition饲料diets FM 25% I 25% II 50% I 50% II 水分 moisture 71.06±0.471 71.46±0.382 71.72±0.740 72.24±0.777 71.08±0.668 粗蛋白crude protein 16.15±0.075 b 15.98±0.290 ab 16.09±0.180 b 15.26±0.568 a 15.86±0.452 ab 粗脂肪crude lipid 9.07±0.476 9.19±0.495 9.00±0.170 9.02±0.229 8.86±0.406 灰分ash 3.09±0.042 3.02±0.059 3.04±0.078 3.12±0.044 3.04±0.060 表 5 植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠血液生化指标的影响
Table 5 Effect of arginine supplementation based on the experimental diets with plant protein replaced fish meal on the blood biochemical parameters in Asian red-tailed catfish (H. wyckioides)
血液生化指标
blood biochemical parameters饲料diets FM 25% I 25% II 50% I 50% II 谷草转氨酶/(U·mL−1) GOT 7.38±0.899 6.79±1.445 6.75±1.882 6.56±0.948 6.52±1.613 谷丙转氨酶/(U·mL−1) GPT 4.72 ± 0.195 4.45 ± 0.248 4.48 ± 0.101 4.45 ± 0.081 4.25 ±0.136 碱性磷酸酶/(U·dL−1) ALP 2.99±0.556 2.25±0.161 2.56±0.656 2.79±1.027 2.53±0.859 总蛋白/(g·L−1) TP 28.49±0.749 29.53±0.426 27.935±2.436 25.97±2.277 25.47±5.650 白蛋白/(g·L−1) AIB 11.02±3.206 9.14±1.993 10.44±2.717 9.86±2.622 11.17±2.056 尿素氮/(mmol·L−1) UN 3.40±0.805 a 5.14±0.556 b 4.50±1.229 ab 5.24±0.048 b 4.71±0.385 ab 血氨/(μmol·L−1) BA 144.07±15.586 146.53±7.103 125.53±20.304 146.75±1.340 132.01±10.784 甘油三酯/(mmol·L−1) TG 7.16±0.490 6.79±0.736 7.07±0.467 6.35±0.416 7.13±0.435 总胆固醇/(mmol·L−1) T-CH 7.03±0.196 7.25±0.610 6.92±0.306 7.24±0.600 6.69±0.173 表 6 植物蛋白替代鱼粉饲料中添加精氨酸对丝尾鳠肠绒毛高度、绒毛宽度、肌层厚度和杯状细胞的影响
Table 6 Effect of arginine supplementation based on the experimental diets with plant protein replaced fish meal on the intestinal villus height, villus width, musculus thickness and goblet cells in Asian red-tailed catfish (H. wyckioides)
指标
index饲料diets FM 25% I 25% II 50% I 50% II 绒毛高度/μm villus height 811.80±33.508 c 610.03±30.692 ab 706.50±55.893 bc 475.07±43.010 a 612.43±108.419 ab 绒毛宽度/μm villus width 188.33±9.078 bc 199.70±10.054 c 193.47±13.282 bc 139.20±36.909 a 153.97±26.750 ab 肌层厚度/μm musculus thickness 117.20±6.978 110.10±7.296 116.20±6.200 116.83±4.119 115.23±12.147 杯状细胞数/(个·根−1) goblet cells 44.43±10.983 a 51.37±8.411 a 54.77±7.969 a 76.67±7.823 b 83.67±10.392 b -
[1] 阴双雨. 澜沧江丝尾鳠生物学和资源[D]. 武汉: 华中农业大学, 2011. [2] 张正兴, 张正雄, 薛晨江, 等. 丝尾鳠生物学特性及人工养殖技术[J]. 现代农业科技, 2014(21): 274. DOI: 10.3969/j.issn.1007-5739.2014.21.164. [3] DENG J M, ZHANG X, BI B L, et al. Dietary protein requirement of juvenile Asian red-tailed catfish Hemibagrus wyckioides[J]. Animal Feed Science and Technology, 2011, 170(3/4): 234. DOI: 10.1016/j.anifeedsci.2011.08.014.
[4] HUNG L T, BINH V T T, THANH-TRUC N T, et al. Effects of dietary protein and lipid levels on growth, feed utilization and body composition in redâtailed catfish juveniles (Hemibagrus wyckioides, Chaux & Fang 1949)[J]. Aquaculture Nutrition, 2017, 23(2): 367. DOI: 10.1111/anu.12401.
[5] GLENCROSS B D, BOOTH M, ALLAN G L. A feed is only as good as its ingredients: a review of ingredient evaluation strategies for aquaculture feeds[J]. Aquaculture Nutrition, 2010, 13(1): 17. DOI: 10.1111/j.1365-2095.2007.00450.x.
[6] NAYLOR R L, HARDY R W, BUREAU D P, et al. Feeding aquaculture in an era of finite resources[J]. Proceedings of the National Academy of Sciences, 2009, 106(36): 15103. DOI: 10.1073/pnas.0905235106.
[7] GOMEZ-REQUENI P, MINGARRO M, CALDUCH-GINER J A, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata)[J]. Aquaculture-AMSTERDAM-, 2004, 232(1): 493. DOI: 10.1016/s0044-8486(03)00532-5.
[8] HANSEN A C, ROSENLUND G, KARLSEN, et al. Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I—Effects on growth and protein retention[J]. Aquaculture, 2007, 272(1/2/3/4): 599. DOI: 10.1016/j.aquaculture.2007.08.034.
[9] KAUSHIK S J, COVES D, DUTTO G, et al. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax[J]. Aquaculture-AMSTERDAM-, 2004, 230(1): 391. DOI: 10.1016/s0044-8486(03)00422-8.
[10] AZARM H M, LEE S M. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream, Acanthopagrus schlegeli[J]. Aquaculture Research, 2014, 45(6): 1002. DOI: 10.1111/are.12040.
[11] SINGH S, KHAN M A. Dietary arginine requirement of fingerling hybrid Clarias (Clarias gariepinus×Clarias macrocephalus)[J]. Aquaculture Research, 2006, 38(1): 17. DOI: 10.1111/j.1365-2109.2006.01618.x.
[12] MOMMSEN T P, MOON T W, PLISETSKAYA E M. Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout[J]. Physiological and Biochemical Zoology, 2001, 74(5): 668. DOI: 10.1086/322924.
[13] BUENTELLO J A, GATLIN Ⅲ D M. The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid[J]. Aquaculture, 2000, 188(3/4): 311. DOI: 10.1016/s0044-8486(00)00344-6.
[14] NWANNA L C. Dietary tryptophan requirement of the African catfish[J]. Journal of Applied Aquaculture, 1999, 9(1): 61. DOI: 10.1300/J028v09n01_05.
[15] KHAN M A. Effects of dietary arginine levels on growth, feed conversion, protein productive value and carcass composition of stinging catfish fingerling Heteropneustes fossilis (Bloch)[J]. Aquaculture International, 2012, 20(5): 937. DOI: 10.1007/s10499-012-9519-3.
[16] CHEN G F, FENG L, KUANG S Y, et al. Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian)[J]. British Journal of Nutrition, 2012, 108(2): 195. DOI: 10.1017/s0007114511005459.
[17] MA T, ZUAZAGA G. Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method[J]. Industrial & Engineering Chemistry Analytical Edition, 1942, 14(3): 280. DOI: 10.1021/i560103a035.
[18] LIU Y Z, HE G, WANG Q C, et al. Hydroxyproline supplementation on the performances of high plant protein source based diets in turbot (Scophthalmus maximus L.)[J]. Aquaculture, 2014, 433: 476. DOI: 10.1016/j.aquaculture.2014.07.002.
[19] TU Y Q, XIE S Q, HAN D, et al. Dietary arginine requirement for gibel carp (Carassis auratus gibelio var. CAS Ⅲ) reduces with fish size from 50 g to 150 g associated with modulation of genes involved in TOR signaling pathway[J]. Aquaculture, 2015, 449: 37. DOI: 10.1016/j.aquaculture.2015.02.031.
[20] LIANG H, REN M, HABTE-TSION H M, et al. Dietary arginine affects growth performance, plasma amino acid contents and gene expressions of the TOR signaling pathway in juvenile blunt snout bream, Megalobrama amblycephala[J]. Aquaculture, 2016, 461: 1. DOI: 10.1016/j.aquaculture.2016.04.009.
[21] CHEN Z C, LIU Y, LI Y X, et al. Dietary arginine supplementation mitigates the soybean meal induced enteropathy in juvenile turbot, Scophthalmus maximus L.[J]. Aquaculture Research, 2018, 49(4): 1535. DOI: 10.1111/are.13608.
[22] 刘兴旺. 大菱鲆及半滑舌鳎蛋白质营养生理研究[D]. 青岛: 中国海洋大学, 2010. [23] KISSIL G W, LUPATSCH I, HIGGS D A, et al. Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L.[J]. Aquaculture Research, 2000, 31(7): 595. DOI: 10.1046/j.1365-2109.2000.00477.x.
[24] 李会涛, 麦康森, 艾庆辉, 等. 大黄鱼对几种饲料蛋白原料消化率的研究[J]. 水生生物学报, 2007, 31(3): 370. DOI: 10.3321/j.issn:1000-3207.2007.03.011. [25] MUNDHEIM H, AKSNES A, HOPE B. Growth, feed efficiency and digestibility in salmon (Salmo salar L.) fed different dietary proportions of vegetable protein sources in combination with two fish meal qualities[J]. Aquaculture, 2004, 237(1/2/3/4): 315. DOI: 10.1016/j.aquaculture.2004.03.011.
[26] OPSTVEDT J, AKSNES A, HOPE B, et al. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins[J]. Aquaculture, 2003, 221(1/2/3/4): 365. DOI: 10.1016/s0044-8486(03)00026-7.
[27] OSTASZEWSKA T, DABROWSKI K, PALACIOS M E, et al. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins[J]. Aquaculture, 2005, 245(1/2/3/4): 273. DOI: 10.1016/j.aquaculture.2004.12.005.
[28] POHLENZ C, BUENTELLO A, MILLER T, et al. Effects of dietary arginine on endocrine growth factors of channel catfish, Ictalurus punctatus[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 166(2): 215. DOI: 10.1016/j.cbpa.2013.06.016.
[29] REN M C, LIAO Y J, XIE J, et al. Dietary arginine requirement of juvenile blunt snout bream, Megalobrama amblycephala[J]. Aquaculture, 2013, 414/415: 229. DOI: 10.1016/j.aquaculture.2013.08.021.
[30] DENG J M, WANG Y, CHEN L Q, et al. Effects of replacing plant proteins with rubber seed meal on growth, nutrient utilization and blood biochemical parameters of tilapia (Oreochromis niloticus×O. aureus)[J]. Aquaculture Nutrition, 2017, 23(1): 36. DOI: 10.1111/anu.12355.
[31] HELLAND S J, GRISDALE-HELLAND B. Replacement of fish meal with wheat gluten in diets for Atlantic halibut (Hippoglossus hippoglossus): effect on whole-body amino acid concentrations[J]. Aquaculture, 2006, 261(4): 1363. DOI: 10.1016/j.aquaculture.2006.09.025.
[32] MERIDA S N, TOMAS-VIDAL A, MARTINEZ-LLORENS S, et al. Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: amino acid retention, gut and liver histology[J]. Aquaculture, 2010, 298(3/4): 275. DOI: 10.1016/j.aquaculture.2009.10.025.
[33] TALAS Z S, GULHAN M F. Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss)[J]. Ecotoxicology & Environmental Safety, 2009, 72(7): 1997. DOI: 10.1016/j.ecoenv.2009.04.011.
[34] METON I, MEDIAVILLA D, CASERAS A, et al. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of Gilthead sea bream (Sparus aurata)[J]. British Journal of Nutrition, 1999, 82(3): 223. DOI: 10.1017/S0007114599001403.
[35] TENGJAROENKUL B, SMITH B J, CACECI T, et al. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L.[J]. Aquaculture, 2000, 182(3/4): 323. DOI: 10.1016/s0044-8486(99)00270-7.
[36] 付晶晶, 黄燕华, 曹俊明, 等. 五种植物蛋白源替代鱼粉对花鲈血清生化指标、转氨酶活性及抗氧化应激参数的影响[J]. 湖北农业科学, 2015, 54(20): 5089. DOI: 10.14088/j.cnki.issn0439-8114.2015.20.041. [37] 蒋春琴, 冷向军, 李小勤, 等. 醋酸棉酚对异育银鲫生长性能、血清生化指标和棉酚残留的影响[J]. 动物营养学报, 2012, 24(1): 172. DOI: 10.3969/j.issn.1006-267x.2012.01.024. [38] BABATUNDE G M, POND W G. Nutritive value of Nigerian rubber seed (Hevea brasiliensis) meal and oil. IV. Effects of graded levels of rubber seed meal and oil on energy and nitrogen utilization by growing rats[J]. Animal Feed Science & Technology, 1990, 31(3): 313. DOI: 10.1016/0377-8401(90)90136-v.
[39] LEWIS A J, PEO E R, CUNNINGHAM P J, et al. Determination of the optimum dietary proportions of lysine and tryptophan for growing rats based on growth, food intake and plasma metabolites[J]. Journal of Nutrition, 1977, 107(8): 1366. DOI: 10.1093/jn/107.8.1361.
[40] GU M, BAI N, ZHANG Y Q, et al. Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels[J]. Aquaculture, 2016, 464: 293. DOI: 10.1016/j.aquaculture.2016.06.035.
[41] BAEVERFJORD G, KROGDAHL A. Development and regression of soybcan meal induced enteritis in atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish[J]. Journal of Fish Diseases, 1996, 19(5): 385. DOI: 10.1046/j.1365-2761.1996.d01-92.x.
[42] BURRELLS C, WILLIAMS P D, SOUTHGATE P J, et al. Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins[J]. Veterinary Immunology & Immunopathology, 1999, 72(3/4): 286. DOI: 10.1016/S0165-2427(99)00143-9.
[43] REFSTIE S, STOREBAKKEN T, BAEVERFJORD G, et al. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level[J]. Aquaculture, 2001, 193(1/2): 104. DOI: 10.1016/s0044-8486(00)00473-7.
[44] KROGDAHL Å, GAJARDO K, KORTNER T M, et al. Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(15): 3900. DOI: 10.1021/jf506242t.
[45] 卓丽欣, 赵红霞, 黄燕华, 等. 氧化鱼油对黄颡鱼幼鱼肠道健康的影响及精氨酸的干预作用[J]. 水产学报, 2018, 42(1): 108. DOI: 10.11964/jfc.20160810507. [46] SANTIGOSA E, GARVIA-MEILAN I, VALENTIN J M, et al. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss)[J]. Aquaculture, 2011, 317(1/2/3/4): 146. DOI: 10.1111/are.13608.
[47] CHENG Z, GATLIN D M, BUENTELLO A. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops×Morone saxatilis)[J]. Aquaculture, 2012, 362-363: 39. DOI: 10.1016/j.aquaculture.2012.07.015.
[48] 高中月, 王旋, 何艮. 饲料中精氨酸水平对大菱鲆幼鱼生长、血浆游离氨基酸和肠道形态的影响[J]. 河北渔业, 2018(7): 1. DOI: 10.3969/j.issn.1004-6755.2018.07.001. [49] 迟淑艳, 韩凤禄, 谭北平, 等. 饲料精氨酸水平对斜带石斑鱼幼鱼生长和肠道形态的影响[J]. 水生生物学报, 2016, 40(2): 388. DOI: 10.7541/2016.51. -
期刊类型引用(1)
1. 李晓亮,杨世先,杨进成,王刚,张钟,陈佳清,周翠英,左丽娟,邓成忠,张玉荣,段永华. 火龙珠种子无菌萌发研究. 安徽农业科学. 2021(23): 140-142 . 百度学术
其他类型引用(3)