• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Siwen ZHANG, Xiaohui CHEN, Ling TONG, et al. Method Improvement for Determination of Soil Exchangeable Calcium and Magnesium[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(6): 1081-1088. DOI: 10.12101/j.issn.1004-390X(n).201912013
Citation: Siwen ZHANG, Xiaohui CHEN, Ling TONG, et al. Method Improvement for Determination of Soil Exchangeable Calcium and Magnesium[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(6): 1081-1088. DOI: 10.12101/j.issn.1004-390X(n).201912013

Method Improvement for Determination of Soil Exchangeable Calcium and Magnesium

More Information
  • Received Date: December 05, 2019
  • Revised Date: May 08, 2020
  • Available Online: September 09, 2020
  • Published Date: November 29, 2020
  • PurposeTo optimize and simplify the operation procedures of the national standard determination method [GB 7865—1987(2)] for rapid evaluation of large quantities of soil samples by comparing the accuracy and efficiency of different methods in determining the contents of soil exchangeable calcium (Ca2+) and magnesium (Mg2+) in terms of extraction reagents, centrifugation times, and shaking time.
    MethodRepresentative soils were taken from four regions of Northwest, Northeast, Southwest, and South China, and five extraction reagents deionized water (H2O), calcium chloride (CaCl2), potassium chloride (KCl), ammonium acetate (NH4OAc) and Mehlich 3 (Me 3) were utilized for method comparison at different extraction-centrifugation time (1-6 times) and shaking time (15-60 min).
    Result1) Exchangeable Ca2+ and Mg2+ contents for a given soil sample varied with different extractant in the order of Me 3>CaCl2>KCl>NH4OAc>H2O. 2) Soil exchangeable Ca2+ and Mg2+ contents were positively correlated with the extraction-centrifugation times, and increasing the extraction-centrifugation times might give rise to significantly higher values. 3) Extraction-centrifugation times depended on soil types. Exchangeable Ca2+ and Mg2+ contents of soils in Jiangxi (standard sample), Yunnan, and Fujian stabilized after four times of extraction-centrifugation, while the Xinjiang and Heilongjianghe soil needed 6 (Ca2+) and 5 (Mg2+) times of extraction-centrifugation, respectively. 4) Concentrations of exchangeable Ca2+ and Mg2+ determined by 60 min of NH4OAc extraction and oscillation was comparable to those derived from the national standard method, and the oscillation method was more suitable for large quantities of samples.
    ConclusionDifferent extraction reagents affect final values of soil exchangeable Ca2+ and Mg2+ contents. Compared with the national standard method, the NH4OAc oscillation method has relatively less procedures, lower equipment requirements, and reliable results, which is more suitable for high-efficiency testing requirements of large quantities of soil samples.
  • [1]
    MAURICE D, CLAUDINE M, MICHEL T. Calcium and the cell wall[J]. Plant Cell & Environment, 1984, 7(6): 441. DOI: 10.1111/j.1365-3040.1984.tb01434.x.
    [2]
    HEPLER, P K. Calcium: a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8): 2142. DOI: 10.1105/tpc.105.032508.
    [3]
    GRANSEE A, FÜHRS H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions[J]. Plant and Soil, 2013, 368(2): 5. DOI: 10.1007/s11104-012-1567-y.
    [4]
    MARSCHNER H. Mineral nutrition of higher plants[M]. New York: Academic Press San Diego, 1995.
    [5]
    党宏波. 钙、镁元素对马铃薯产量和品质的影响[D]. 呼和浩特: 内蒙古农业大学, 2018.
    [6]
    白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究[J]. 中国土壤与肥料, 2004(2): 3. DOI: 10.11838/sfsc.20040201.
    [7]
    李丹萍, 刘敦一, 张白鸽, 等. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征[J]. 土壤学报, 2018, 55(6): 219. DOI: 10.11766/trxb201802130616.
    [8]
    王芳, 刘鹏, 徐根娣. 土壤中的镁及其有效性研究概述[J]. 河南农业科学, 2004(1): 33.
    [9]
    丁群英. 安徽沿淮地区土壤交换性镁含量及镁对大豆营养的影响[J]. 安徽农学通报, 2002, 8(6): 60.
    [10]
    ORLOVIUS K, MCHOUL J. Effect of two magnesium fertilizers on leaf magnesium concentration, yield, and quality of potato and sugar beet[J]. Journal of Plant Nutrition, 2015, 38(13): 2044. DOI: 10.1080/01904167.2014.958167.
    [11]
    ROEMHELD V, KIRKBY E A. Magnesium functions in crop nutrition and yield[J]. Nawozy I Nawożenie (Fertilisers and Fertilization), 2009, 34: 163.
    [12]
    STAUGAITIS G, JONAS M, DONATAS Š. Comparison of magnesium determination methods as influenced by soil properties[J]. Zemdirbyste-agriculture, 2011, 97(3): 105. DOI: 10.3906/tar-0911-59.
    [13]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [14]
    GB 7856–1987. 森林土壤速效钾的测定[S].
    [15]
    FOTYMA M, DOBERS E S. Soil testing methods and fertilizer recommendations in Central-Eastern European countries[J]. Fertilizer and Fertilization, 2008, 30(2): 6.
    [16]
    JORDAN M L, RUBAEK G H, EHLERT P A I, et al. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations[J]. Soil Use & Management, 2012, 28(4): 419. DOI: 10.1111/j.1475-2743.2012.00453.x.
    [17]
    刘雪鸿, 王京平, 陈万明, 等. 酸性、中性土壤交换性钙镁测定方法的探讨[J]. 湖南农业科学, 2004(3): 26.
    [18]
    冯建军, 陈丽芝, 张玉珠. 酸性土壤交换性钙、镁测定方法的探讨[J]. 内蒙古农业科技, 2008(5): 76.
    [19]
    METSON A J, GIBSON E J, LEE R. Magnesium in New Zealand soils. VI. Summary of data on magnesium fractions and on some interrelationships in the main soil groups[J]. New Zealand Journal of Agricultural Research, 1977, 18(4): 317. DOI: 10.1080/03015521.1974.10427689.
    [20]
    杨乐苏, 于彬, 王志香. 南方酸性土壤交换性钙、镁和钾测定方法的探讨[J]. 热带林业, 2005, 33(3): 21. DOI: 10.3969/j.issn.1672-0938.2005.03.008.
    [21]
    姜丽丽, 李絮花, 王川, 等. 土壤交换性钙镁测定方法的改进研究[J]. 湖南农业科学, 2011(5): 41.
    [22]
    红 梅, 郑海春, 魏晓军, 等. 石灰性土壤交换性钙和镁测定方法的研究[J]. 土壤学报, 2014, 51(1): 82. DOI: 10.11766/trxb201304100167.
    [23]
    董健京, 王玮, 梁聪杰. 石灰性土壤中交换性钙镁测定方法比较[J]. 山西科技, 2013, 28(4): 35. DOI: 10.3969/j.issn.1004-6429.2013.04.014.
    [24]
    李淑棉. 石灰性土壤交换性盐基组成测定方法的改进[J]. 宁夏农林科技, 2000(2): 58.
    [25]
    潘根兴, 卢朝晖. Co(NH3)6Cl3浸提法测定石灰性土壤阳离子交换量的实验[J]. 土壤通报, 1995, 26(4): 192.
    [26]
    袁斌, 杨剑虹, 卢扬, 等. K2C2O4-KCl法快速测定石灰性紫色土壤阳离子交换量[J]. 西南农业大学学报(自然科学版), 2005, 27(6): 914. DOI: 10.3969/j.issn.1673-9868.2005.06.041.

Catalog

    Article views (2539) PDF downloads (19) Cited by()