• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Jing AN, Xiaoya ZHANG, Muying DUAN, et al. Effects of Drying-rewetting Intensity and Frequency on the Inorganic Nitrogen and Net Nitrogen Mineralization of Hydrocotyle Vulgaris-soil System[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(3): 494-499. DOI: 10.12101/j.issn.1004-390X(n).201711019
Citation: Jing AN, Xiaoya ZHANG, Muying DUAN, et al. Effects of Drying-rewetting Intensity and Frequency on the Inorganic Nitrogen and Net Nitrogen Mineralization of Hydrocotyle Vulgaris-soil System[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(3): 494-499. DOI: 10.12101/j.issn.1004-390X(n).201711019

Effects of Drying-rewetting Intensity and Frequency on the Inorganic Nitrogen and Net Nitrogen Mineralization of Hydrocotyle Vulgaris-soil System

More Information
  • Received Date: November 06, 2017
  • Revised Date: March 21, 2018
  • Available Online: May 24, 2018
  • Published Date: April 30, 2018
  • Purpose Effects of altered precipitation patterns on natural ecosystems with climate change has already become a hot topic of ecological study. Our purpose was to reveal the effects of altered precipitation patterns on the inorganic nitrogen (N) and net N mineralization.
    Method We conducted a greenhouse experiment with H. vulgaris across three drying-rewetting intensities and frequencies. We analyzed the content of nitrate and ammonium, net N mineralization and nitrification rate of the soils.
    Result (1) Drying-rewetting intensity significantly affected soil inorganic N content of H. vulgaris. In the lowest drying-rewetting intensity, the ammonium content was the highest and nitrate content was the lowest than other two treatments. With drying-rewetting intensity increased, ammonium content decreased while nitrate content increased. (2) Drying-rewetting frequency significantly affected soil inorganic N content of H. vulgaris. With drying-rewetting frequency increased, ammonium content decreased while nitrate content increased. (3) There was a significant interactive effect between drying-rewetting intensity and frequency on soil inorganic N and net N mineralization.
    Conclusion Our results suggested that altered drying-rewetting intensity and frequency can affect N availability and N cycle in plant-soil system, which indirectly affect the soil inorganic N, net N mineralization and nitrification rate of H. vulgaris.
  • [1]
    MEEHL G A, TEBALDI C. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 2004, 305(5686): 994. DOI: 10.1126/science.1098704.
    [2]
    STOCKER T F, QIN D, PLATTNER G K, et al. Contribution of working group I to fifth assessment report of the intergovernmental panel on climate change[C]// Climate change 2013: The physical science basis. Bern, Switzerland, 2016.
    [3]
    LEITNER S, MINIXHOFER P, INSELSBACHER E, et al. Short-term soil mineral and organic nitrogen fluxes during moderate and severe drying-rewetting events[J]. Applied Soil Ecology, 2017, 114: 28. DOI: 10.1016/j.apsoil.2017.02.014.
    [4]
    WANG Y S, JENSEN C R, LIU F L. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation[J]. Agricultural Water Management, 2017, 179(SI): 254. DOI: 10.1016/j.agwat.2016.04.015.
    [5]
    王苑, 宋新山, 王君, 等. 干湿交替对土壤碳库和有机碳矿化的影响[J]. 土壤学报, 2014, 51(2): 342.
    [6]
    SCHIMEL J P, BENNETT J. Nitrogen mineralization: challenges of a changing paradigm[J]. Ecology, 2004, 85(3): 591. DOI: 10.1890/03-8002.
    [7]
    任艳林. 降水变化对樟子松人工林土壤无机氮和净氮矿化速率的影响[J]. 北京大学学报(自然科学版), 2012, 48(6): 925.
    [8]
    MA L, GUO C, XIN X, et al. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe[J]. Biogeosciences, 2013, 10(11): 7361. DOI: 10.5194/bg-10-7361-2013.
    [9]
    GUNTIÑASAABA M E. Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study[J]. European Journal of Soil Biology, 2012, 48(1): 73. DOI: 10.1016/j.ejsobi.2011.07.015.
    [10]
    柳维扬, 高艳红, 王家强, 等. 水分因素对绿洲荒漠过渡带土壤氮矿化的影响[J]. 水土保持学报, 2015, 29(5): 89.
    [11]
    陈静, 李玉霖, 冯静, 等. 温度和水分对科尔沁沙质草地土壤氮矿化的影响[J]. 中国沙漠, 2016, 29(1): 103.
    [12]
    PALMER K, KÖPP J, GEBAUER G, et al. Drying-rewetting and flooding impact denitrifier activity rather than community structure in a moderately acidic fen[J]. Frontiers in Microbiology, 2016, 7(215): 727. DOI: 10.3389/fmicb.2016.00727.
    [13]
    PETRAKIS S, SEYFFERTH A, KAN J J, et al. Influence of experimental extreme water pulses on greenhouse gas emissions from soils[J]. Biogeochemistry, 2017, 133(2): 147. DOI: 10.1007/s10533-017-0320-2.
    [14]
    BIRCH H F. The effect of soil drying on humus decomposition and nitrogen availability[J]. Plant and Soil, 1958, 10(1): 9. DOI: 10.1007/BF01343734.
    [15]
    LUPON A, SABATER F, MIÑARRO A, et al. Contribution of pulses of soil nitrogen mineralization and nitrification to soil nitrogen availability in three mediterranean forests[J]. European Journal of Soil Science, 2016, 67(3): 303. DOI: 10.1111/ejss.12344.
    [16]
    张威, 张旭东, 何红波, 等. 干湿交替条件下土壤氮素转化及其影响研究进展[J]. 生态学杂志, 2010, 29(04): 783.
    [17]
    MANZONI S, SCHIMEL J P, PORPORATO A. Responses of soil microbial communities to water stress: results from a meta-analysis[J]. Ecology, 2012, 93(4): 930.. doi: 10.1890/11-0026.1
    [18]
    BELL C W, TISSUE D T, LOIK M E, et al. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland[J]. Global Change Biology, 2014, 20(5): 1657. DOI: 10.1111/gcb.12418.
    [19]
    GUO X B, DRURY C F, YANG X M, et al. The extent of Soil drying and rewetting affects nitrous oxide emissions, denitrification, and nitrogen mineralization[J]. Soil Science Society of America Journal, 2014, 78(1): 194. DOI: 10.2136/sssaj2013.06.0219.
    [20]
    MILLER A E, SCHIMEL J P, MEIXNER T, et al. Episodic rewetting enhances carbon and nitrogen release from chapparal soils[J]. Soil Biology & Biochemistry, 2005, 37(12): 2195. DOI: 10.1016/j.soilbio.2005.03.021.
    [21]
    MORILLAS L, DURÁN J, RODRÍGUEZ A, et al. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange[J]. Global Change Biology, 2015, 21(10): 3854. DOI: 10.1111/gcb.12956.
    [22]
    NIELSEN U N, BALL B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems[J]. Global Change Biology, 2015, 21(4): 1407. DOI: 10.1111/gcb.12789.
    [23]
    KRUSE J S, KISSEL D E, CABRERA M L. Effects of drying and rewetting on carbon and nitrogen mineralization in soils and incorporated residues[J]. Nutrient Cycling in Agroecosystems, 2004, 69(3): 247. DOI: 10.1023/B: FRES.0000035197.57441.cd.
    [24]
    耿宇鹏, 张文驹, 李博, 等. 表型可塑性与外来植物的入侵能力[J]. 生物多样性, 2004, 12(04): 447. doi: 10.3321/j.issn:1005-0094.2004.04.009
    [25]
    缪丽华, 季梦成, 王莹莹, 等. 湿地外来植物香菇草(Hydrocotyle vulgaris)入侵风险研究[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 425. DOI: 10.3785/j.issn.1008-9209.2011.04.011.
    [26]
    DONG B C, WANG J Z, LIU R H, et al. Soil heterogeneity affects ramet placement of hydrocotyle vulgaris[J]. Journal of Plant Ecology, 2015, 8(1): 92. DOI: 10.1093/jpe/rtu003.
    [27]
    秦玲, 李嘉瑞, 魏钦平. 草炭及其制剂在园艺栽培中的应用[C]//中国园艺学会青年学术讨论会, 2004.
    [28]
    吴昊旻, 姜燕敏, 强玉华. 浙江丽水市降水特征多时间尺度周期变化规律的探究[J]. 干旱气象, 2012, 30(01): 34. doi: 10.3969/j.issn.1006-7639.2012.01.007
    [29]
    逯孝强, 陈永金, 海建航, 等. 浙江省1951-2013年气候变化研究[J]. 曲阜师范大学学报(自然科学版), 2016, 42(03): 83.
    [30]
    KNOEPP J D, SWANK W T. Using soil temperature and moisture to predict forest soil nitrogen mineralization[J]. Biology and Fertility of Soils, 2002, 36(3): 177. DOI: 10.1007/s00374-002-0536-7.
    [31]
    GLOSER V, JE ÍKOVÁ M, LÜSCHER A, et al. Soil mineral nitrogen availability was unaffected by elevated atmospheric pCO2 in a four year old field experiment (Swiss FACE)[J]. Plant and Soil, 2000, 227(1/2): 291. DOI: 10.1023/A: 1026538213199.
    [32]
    FUJITA Y, VAN BODEGOM P M, VENTERINK H O, et al. Towards a proper integration of hydrology in predicting soil nitrogen mineralization rates along natural moisture gradients[J]. Soil Biology & Biochemistry, 2013, 58(2): 302. DOI: 10.1016/j.soilbio.2012.12.013.
    [33]
    KRONZUCKER H J, GLASS A D, YAEESH S M. Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes[J]. Plant Physiology, 1999, 120(1): 283. DOI: 10.1104/pp.120.1.283.
    [34]
    刘婷, 尚忠林. 植物对铵态氮的吸收转运调控机制研究进展[J]. 植物生理学报, 2016, 52(06): 799.
    [35]
    CANARINI A, DIJKSTRA F A. Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling[J]. Soil Biology & Biochemistry, 2015, 81: 195. DOI: 10.1016/j.soilbio.2014.11.014.
    [36]
    AUSTIN A T, YAHDJIAN L, STARK J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 2004, 141(2): 221. DOI: 10.1007/s00442-004-1519-1.
    [37]
    FIERER N, SCHIMEL J P, HOLDEN P A. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology, 2003, 45(1): 63. DOI: 10.1007/s00248-002-1007-2.
    [38]
    XIANG S R, DOYLE A, HOLDEN P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology & Biochemistry, 2008, 40(9): 2281. DOI: 10.1016/j.soilbio.2008.05.004 .
    [39]
    BORKEN W, MATZNER E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. Global Change Biology, 2009, 15(4): 808. DOI: 10.1111/j.1365-2486.2008.01681.x.
    [40]
    YAN N, MARSCHNER P, CAO W H, et al. Influence of salinity and water content on soil microorganisms[J]. International Soil & Water Conservation Research, 2015, 3(4): 320. DOI: 10.1016/j.iswcr.2015.11.003
  • Related Articles

    [1]Fupeng MEI, Zhiyuan HUANG, Jiaxiang WU, Mengzhuang CUN, Guiru ZHAO, Shihua LI, Wangfu YANG, Shuhui ZI. Effects of Nitrogen Reduction on Intercropping Advantage of Maize and Aconitum vilmorinianum[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(5): 890-896. DOI: 10.12101/j.issn.1004-390X(n).202111008
    [2]Huashan LIAN, Panhong ZOU, Xinxin LI, Lijin LIN, Ming′an LIAO. Effect of 2,4-epibrassinolide on the Nitrogen Uptake and Translocation of Grape Seedlings and Nitrogen Content in Soil[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(1): 170-176. DOI: 10.12101/j.issn.1004-390X(n).202105048
    [3]Weijie TANG, Chunyun GUAN. Effect of Topdressing Different Nitrogen Fertilizers on the Growth, Physiology and Yield of Rapeseed (Brassica napus L.)[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(5): 878-884. DOI: 10.12101/j.issn.1004-390X(n).201912042
    [4]Yang YANG, Feifei HE, Gang DENG, Guanghui DU, Feihu LIU. Effect of Nitrogen Fertilization on the Yield and Apparent Soil Nitrogen Balance of Hemp (Cannabis sativa L.)[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(5): 833-837. DOI: 10.12101/j.issn.1004-390X(n).201810007
    [5]Yubo ZHOU, Jingyan WANG, Shuai HUANG, Wei GONG, Hailong TANG. Effects of Moisture and Temperature on the Soil Nitrogen Mineralization of Sassafras Tzumu Plantations in Rainy Area of West China[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(3): 479-485. DOI: 10.12101/j.issn.1004-390X(n).201807028
    [6]Peijin WU, Suhui YAN, Congyu ZHANG, Qingqin SHAO, Feng XU, Wenyang LI. Effects of Nitrogen Topdressing Stages on the Starch Granule Size Distribution in Wheat Grains under Different Nitrogen Rates[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(5): 790-796. DOI: 10.12101/j.issn.1004-390X(n).201801045
    [7]ZHANG Xiaohong, ZHAO Yijie, LIN Qiang, CHEN Yizhao. Effects of Neodymium on the Activity of the Nitrogen Metabolism Related Enzyme in Seedless Watermelon Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(6): 1072-1078. DOI: 10.16211/j.issn.1004-390X(n).2017.06.016
    [8]XU Zhaoli, YANG Yuhong, DUAN Yuqi, JIN Yan. Effect of Nitrogen Application Rate and Nitrate Nitrogen Ratio on Accumulation and Distribution of P, K and Cl of Flue-cured Tobacco[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(6): 1028-1035. DOI: 10.16211/j.issn.1004-390X(n).2017.06.010
    [9]ZHAO Shengli, LONG Guangqiang, YANG Chao, TANG Li, ZHENG Yi. Effects of Nitrogen Application on Nitrogen Accumulation and Distribution of Crops in Maize and Potato Intercropping[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(5): 886-894. DOI: 10.16211/j.issn.1004-390X(n).2016.05.018
    [10]ZHAI Jingwu, XU Yongbo. The Characteristics of Nitrification of Soil Nitrogen in Yuanyang Terraced Paddy Soils[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2015, 30(2): 263-270. DOI: 10.16211/j.issn.1004-390X(n).2015.02.016
  • Cited by

    Periodical cited type(1)

    1. 乐艺,张晓雅,高俊琴,丁艳,李谦维. 模拟干湿交替对若尔盖高寒湿地土壤呼吸及可溶性碳氮稳定性的影响. 水土保持研究. 2020(01): 81-87 .

    Other cited types(5)

Catalog

    Article views (2241) PDF downloads (18) Cited by(6)