行距对间作玉米/马铃薯产量优势和种间关系的影响
Effects of Row Spacing on the Yields Advantage and Interspecific Interaction of the Intercropped Maize and Potato
-
Keywords:
- row spacing /
- intercropping advantage /
- interspecific interaction /
- maize /
- potato
-
温度通过影响植物体内酶的活性引起相应的生理生化反应,导致植物体内的营养及结构等物质的含量发生变化,进而影响花芽分化和开花[1]。低温处理对于促成春植球根和二年生春化植物具有重要的作用。有研究表明:唐菖蒲(Gladiolus gandavensis)在室温条件下可打破球茎休眠,但一致性很差,5 ℃低温处理有利于球茎解除休眠,促进萌芽和生长[2]。常温处理的郁金香(Tulipa gesneriana)切花品质差,低温处理能明显提高切花质量[3]。
独蒜兰属(Pleione D. Don)是兰科(Orchidaceae)植物中具有极高观赏价值的属,其花色鲜艳,深受人们的喜爱,为优良的盆栽观赏植物,在美、日、欧等地栽培较普遍且已实现规模化商业性栽培[4]。该属植物属于亚热带高山植物,夏季需冷凉气候,落叶后球茎休眠以度过冬季的低温期。有研究表明:独蒜兰(P. bulbocodioides)休眠的假鳞茎不需要经过低温诱导解除休眠,维持冷凉的生长环境,相应的生长发育进程就会启动,20 ℃/15 ℃和15 ℃/10 ℃培养温度有利于独蒜兰的生长和开花[1]。台湾独蒜兰(P. formosana)不经过低温处理也可进行相应的发育进程,但球茎在2~5 ℃冷藏8~10周比在0 ℃、10 ℃或者室温贮藏的球茎开花品质好,在5 ℃条件下冷藏8周可减少台湾独蒜兰的消蕾,且开花率最高,休眠期的假鳞茎运输途中宜以低温贮运[5]。较为苛刻的生长温度条件限制了独蒜兰属植物的种植推广,低海拔地区冬季平均温度较高,往往会造成哑花的情况,导致观赏价值较低;因此低温储存对独蒜兰属植物的运输、花期调控和提高花卉品质有重要的意义。本试验探究低温贮藏过程中艳花独蒜兰(P. aurita)、云南独蒜兰(P. yunnanensis)和黄花独蒜兰(P. forrestii)的形态和生理生化的变化规律,旨在为独蒜兰属假鳞茎的低温贮藏提供参考依据。
1. 材料与方法
1.1 试验材料
本试验选用的艳花独蒜兰、云南独蒜兰和黄花独蒜兰均为中国云南原产,花期集中在3—5月[6]。2015年1月10日,去除供试材料的老根和杂质后,用50%多菌灵可湿性粉剂1 000倍液浸泡10 min,取出后用清水冲洗干净置于阴凉通风处,晾干表面水分后,每种挑选30个同等大小的种球,装入未封口的自封袋内,填充基质为经过杀菌洗净后晾干的水苔,贮藏在(4±1) ℃的冷库中。每种选择10个假鳞茎,在贮藏0、30、60、90、120 d时分别测定新芽长度。在相应的时期,每次随机选取同种假鳞茎3个,在冰上将假鳞茎剪碎混匀后,每个样品称量1 g左右,锡箔纸分别包好后液氮速冻30 min,此后转入−80 ℃的冰箱中保存备用。
1.2 试验方法
粗酶液制备:每个时期3个样品各取0.1 g,3次重复,分别装入5 mL离心管中,并加入1个直径6 mm的钢珠。液氮冷浴后,用高通量组织研磨器研磨5 min,加入4 mL 0.1 mol/L磷酸缓冲液(pH 7.0)混匀。将制备好的粗酶液置于(4±1) ℃、1 200 r/min冷冻离心机中离心15 min。离心后,将吸取的上清液置于(4±1) ℃冰箱保存。参照高俊凤[7]考马斯亮蓝染色法测定可溶性蛋白含量,参照张蜀秋[8]的方法测定SOD活性与POD活性。
1.3 数据处理
数据采用Excel 2010 (Microsoft,美国)进行数据统计和图形绘制,采用SPSS 19.0 (IBM,美国)统计软件对结果进行方差分析,并使用Duncan法进行显著性分析。
2. 结果与分析
2.1 新芽生长情况
3种独蒜兰贮藏30~60 d后开始伸长,90~120 d时,新芽生长达到高峰,其中艳花独蒜兰与黄花独蒜兰新芽伸长长度显著高于前期(表1),同时少数植株母球开始皱缩,并出现花苞和根。贮藏120 d后艳花独蒜兰新芽平均增长9.86 mm,黄花独蒜兰平均增长11.20 mm,云南独蒜兰新芽平均增长4.95 mm。
表 1 低温贮藏过程新芽长度Table 1. The new buds length during cold storage贮藏天数/d
storage time新芽长度/mm
length of the new buds艳花独蒜兰
P. aurita黄花独蒜兰
P. forrestii云南独蒜兰
P. yunnanensis0 18.88±2.57 b 15.13±1.93 b 11.64±3.15 a 30 18.75±3.11 b 15.26±2.02 b 11.80±4.03 a 60 19.48±4.26 b 16.23±3.50 b 12.55±4.46 a 90 20.78±5.09 b 18.05±4.63 b 13.19±5.01 a 120 28.74±9.99 a 26.33±10.00 a 16.59±7.63 a 注:同列数据后附不同字母表示在0.05水平上差异显著。
Note: Different letters in each column indicate significant difference at P<0.05 level.2.2 可溶性蛋白含量
如图1所示:低温贮藏期120 d后艳花独蒜兰假鳞茎中可溶性蛋白较贮藏前下降8.90 μg/g,贮藏期间无明显变化。云南独蒜兰假鳞茎可溶性蛋白呈上升趋势,处理120 d时显著增加达到最大值322.85 μg/g,且显著高于处理前期含量,较贮藏前上升27.63 μg/g。黄花独蒜兰可溶性蛋白含量也呈增加趋势,30 d时未有明显变化,处理60 d开始显著增加、处理120 d时达到324.08 μg/g,较贮藏前上升34.12 μg/g。
2.3 SOD活性
如图2所示:艳花独蒜兰假鳞茎在处理120 d时活性为701.07 U/(g·min),较未进行低温处理时显著降低44.11 U/(g·min),前期均未有明显变化。云南独蒜兰假鳞茎SOD活性90 d内无明显变化,120 d时活性达到最高值741.93 U/(g·min),比处理30 d和60 d有显著增加,但与处理前并无显著差异。低温贮藏过程中黄花独蒜兰假鳞茎SOD活性在638.47~697.44 U/(g·min)范围内浮动,各时期并无明显差异。
2.4 POD活性
如图3所示:3种独蒜兰假鳞茎POD活性均呈现先下降后上升趋势,艳花独蒜兰假鳞茎处理60 d时活性显著下降,处理90 d时达到最低值61.72 U/(g·min),120 d时活性再升高;云南独蒜兰处理30 d时出现下降,POD活性达到最低值102.99 U/(g·min),60 d时POD活性上升达到最高值155.31 U/(g·min),其他时期无显著差异;黄花独蒜兰假鳞茎在处理30 d时POD活性显著下降,达到最低值87.33 U/(g·min),60 d时明显升高,达到214.13 U/(g·min),此后保持较高活性。
3. 讨论
前人研究表明:台湾独蒜兰在5 ℃条件下冷藏8周可减少消蕾,且开花率最高[5]。本试验发现:在(4±1) ℃低温条件下艳花独蒜兰、黄花独蒜兰和云南独蒜兰假鳞茎在贮藏30 d时开始萌动,贮藏60 d时可将假鳞茎转移出冷库进行栽培,120 d时少数植株假鳞茎开始皱缩,并出现花苞和根,此时可能会影响开花品质,因此冷藏不宜超过90 d。
低温引起植物细胞蛋白质的变化主要表现在可溶性蛋白和酶类的变化以及产生抗寒性蛋白[9]。可溶性蛋白具有较强的亲水性,它能明显增强细胞的持水力,而可溶性蛋白含量的增加可以束缚更多的水分,减少低温条件下原生质因结冰而受伤害致死的机会[10]。相关鳞茎植物的研究表明:低温贮藏中鳞茎可溶性蛋白质含量增加是解除休眠的原因之一,通常鳞片中可溶性蛋白质含量越高,其休眠程度越低,萌发所需时间越少[11]。本试验表明:在低温贮藏期间,3种独蒜兰可溶性蛋白含量保持较高水平,其中云南独蒜兰和黄花独蒜兰假鳞茎可溶性蛋白含量有所增加,此时也是两者芽开始萌动伸长的时间,因此可能与两者假鳞茎生理活动不断增强,在此温度下的保护性调节反应。艳花独蒜兰假鳞茎中可溶性蛋白含量并无明显差异,可能与母球营养状况和不同种类有关,具体原因还需进一步研究。
SOD是生物体内普遍存在的一种活性氧清除剂,它能清除对生物体有毒害作用的氧自由基,保护细胞膜的稳定性,有效地防止细胞膜的衰老[12]。艳花独蒜兰假鳞茎SOD活性在120 d时有明显下降但前期均较稳定,可能与前期生理活动不明显有关。黄花独蒜兰和云南独蒜兰低温贮藏90 d时SOD活性略有增加,可能跟两者假鳞茎生理活动增强有关,在贮藏90 d时假鳞茎的新芽开始伸长,假鳞茎迅速消耗自己的养分,以供给整个新芽的生长,假鳞茎的生理活动迅速增加,SOD的活性也随之增强,此结果与百合的研究[12]相似。
POD是植物中普遍存在的一种氧化还原酶,参与植物的许多生理过程,如植物对低温及病虫害的抵抗,植物细胞壁木质素的合成及细胞内自由基的清除等。POD活性有保持细胞结构的完整性,提高细胞对衰老及不良环境抗性的作用[13]。此外,POD活性影响植物的生长,其大小直接影响IAA的代谢与分布,而IAA含量控制着植物的生长发育,高活性POD可加强对IAA的氧化分解,从而减轻对生长的刺激[14]。3种独蒜兰的POD在贮藏30~90 d时均有下降趋势,此时也是新芽开始萌动的时间。本试验与BENKEBLIA等[15]的洋葱试验相似,其研究表明:POD活性的降低与洋葱的萌发一致,POD活性的降低有利于鳞茎的萌发。该现象也发生在马铃薯[16]和葡萄[17]的研究中,两者在休眠解除后,萌芽前POD活性迅速降低。此外,有研究表明:POD和SOD的活性与大花蕙兰类原球茎抗逆性呈正相关,低温胁迫下,两者活性呈增加趋势[18]。本试验发现:3种独蒜兰在30~90 d时POD活性降低可能促进3种独蒜兰属植物新芽的萌动,后期POD升高可能与新芽生长、假鳞茎生理活动增强,清除自由基危害有关,也间接揭示了长时间的低温贮藏对3种独蒜兰造成胁迫,对后期的开花生长不利。
4. 结论
3种独蒜兰假鳞茎在(4±1) ℃低温冷藏60 d后,可转移出冷库进行栽培,冷藏不宜超过90 d。艳花独蒜兰假鳞茎中可溶性蛋白含量无明显变化,SOD活性在处理120 d时出现显著降低。云南独蒜兰和黄花独蒜兰假鳞茎可溶性蛋白呈增加趋势,而SOD活性无明显变化。POD活性的降低有利于三者新芽的萌动。
-
图 2 行距变化对玉米相对生长速率(RGR)的影响
注:a)拔节期—吐丝期;b)吐丝期—乳熟期;不同小写字母代表差异为显著水平(P<0.05)。
Figure 2. Effect of row spacing pattern on relative growth rate (RGR) of maize
Note: a) jointing to silking stage; b) silking to physiology maturity stage; histograms capped with different letters indicate significant difference (P<0.05).
表 1 不同处理作物系统生产力及作物产量差异(mean±SE)
Table 1 Differences in crop system productivity and crop yield under different treatments
年份
year处理
treatment产量/(kg·hm−2) yield 系统生成力system production 马铃薯产量yield of potato 玉米产量yield of maize 间作优势LER 生产力优势SP 2013 ZJ70+ZN25 13 340±222 a 6 042±529 a 1.23±0.05 a 9 254±251 a ZJ60+ZN35 13 817±131 b 6 026±560 a 1.25±0.05 a 9 454±348 a ZJ50+ZN45 13 892±84 b 7 228±215 b 1.38±0.02 b 10 194±133 b ZJ40+ZN55 14 135±92 c 7 335±134 b 1.40±0.03 b 10 327±110 b ZJ30+ZN65 14 050±122 c 7 049±487 b 1.37±0.03 b 10 130±243 b Ms — 9 928±297 c — — Ps 21 573±929 d — — — 2014 ZJ70+ZN25 11 534±428 a 6 782±269 a 1.21±0.06 a 8 873±99 a ZJ60+ZN35 11 951±448 a 6 834±335 a 1.23±0.09 a 9 086±188 a ZJ50+ZN45 12 194±182 b 7 051±395 a 1.27±0.04 a 10 038±214 b ZJ40+ZN55 13 530±600 b 8 281±555 b 1.42±0.04 b 10 332±358 b ZJ30+ZN65 12 942±264 b 7 294±419 b 1.36±0.04 b 10 014±161 b Ms — 10 184±127 c — — Ps 21 236±619 c — — — 注:ZJ为玉米马铃薯之间的种间行距,ZN为玉米马铃薯之间的种内行距;同列数据中小写字母表示差异为显著水平 (P <0.05,Duncan);下同。Note: ZJ represents interspecific spacing and ZN represents intraspecific spacing of maize and potato; values in the same column followed by different capitals at 0.01 levels in Duncan test; the same as below. 表 2 不同处理对玉米和马铃薯相对竞争能力(RII)的影响
Table 2 Effect of different intercropping treatments on the relative interaction index (RII) of maize and potato
年份
year处理
treatment马铃薯potato 玉米maize 初花期early flowering 盛花期flowering 收获期harvest 拔节期jointing 吐丝期booting 乳熟期milk stage 2013 ZJ70+ZN25 −0.06±0.01 a −0.04±0.01 a −0.01±0.00 a −0.04±0.01 c −0.02±0.00 a −0.02±0.01 a ZJ60+ZN35 0.01±0.00 b 0.01±0.00 b 0.02±0.00 a −0.09±0.02 b 0.01±0.00 a 0.02±0.00 a ZJ50+ZN45 0.01±0.00 b 0.06±0.01 c 0.02±0.00 a −0.09±0.02 b 0.03±0.01 a 0.02±0.00 a ZJ40+ZN55 0.13±0.02 c 0.10±0.02 c 0.05±0.01 a −0.19±0.03 a 0.04±0.01 a 0.01±0.00 a ZJ30+ZN65 0.09±0.03 c 0.07±0.02 c 0.04±0.01 a −0.23±0.04 a 0.02±0.00 a 0.01±0.00 a 2014 ZJ70+ZN25 −0.02±0.00 a −0.13±0.02 a −0.02±0.00 a −0.01±0.00 b −0.02±0.00 a −0.02±0.01 a ZJ60+ZN35 0.06±0.01 b −0.01±0.00 b 0.02±0.00 a −0.01±0.00 b 0.01±0.00 a 0.01±0.00 a ZJ50+ZN45 0.10±0.03 b 0.01±0.00 b 0.03±0.01 a −0.03±0.01 b 0.02±0.00 a 0.02±0.00 a ZJ40+ZN55 0.23±0.04 c 0.06±0.01 c 0.04±0.01 a −0.02±0.00 b 0.04±0.01 a 0.02±0.00 a ZJ30+ZN65 0.22±0.03 c 0.01±0.00 b 0.03±0.00 a −0.16±0.04 a 0.01±0.00 a 0.01±0.00 a 表 3 不同处理马铃薯干物质转移率(DMME)和贡献率(DMCR)的差异
Table 3 Differences in dry matter transfer rate (DMME) and contribution rate (DMCR) of potato under different treatments
年份
year处理
treatment初花期early flowering 盛花期flowering DMME/% 比ZJ70高/% DMCR/% 比ZJ70高/% DMME/% 比ZJ70高/% DMCR/% 比ZJ70高/% 2013 ZJ70+ZN25 23.9±2.4 a — 15.1±1.5 a — 25.9±5.6 a — 17.6±2.2 a — ZJ60+ZN35 27.4±2.3 b 12.9 17.4±1.7 a 13.5 32.6±2.8 b 20.4 22.5±2.7 ab 22.0 ZJ50+ZN45 32.4±1.7 c 26.3 22.1±1.9 ab 31.7 36.0±2.5 c 27.9 26.7±1.6 b 34.3 ZJ40+ZN55 36.8±3.5 c 35.0 30.4±2.7 b 50.5 37.3±3.5 c 30.4 30.3±3.1 b 42.0 ZJ30+ZN65 35.2±1.6 c 32.2 26.4±1.5 b 42.9 36.7±2.5 c 29.4 27.4±2.3 b 22.0 Ps 24.4±1.4 ab 1.8 16.3±1.3 a 7.3 25.5±2.4 a −1.7 17.4±1.7 a −0.9 2014 ZJ70+ZN25 19.3±1.9 a — 12.5±1.4 a — 10.1±2.7 a — 8.2±1.6 a — ZJ60+ZN35 19.4±2.6 a 0.4 13.1±2.2 a 4.6 11.4±1.2 a 11.4 8.5±2.1 a 3.5 ZJ50+ZN45 29.1±1.5 b 33.6 22.7±2.3 b 44.9 21.4±2.6 c 52.6 15.4±2.7 b 46.9 ZJ40+ZN55 29.5±1.6 b 34.0 22.6±2.2 b 44.6 26.9±2.8 c 62.5 18.7±2.6 c 56.1 ZJ30+ZN65 29.2±2.2 b 34.6 20.8±1.5 b 39.9 17.7±2.6 b 43.1 12.2±1.7 b 32.8 Ps 17.2±2.6 a −12.2 9.5±1.6 a −31.5 11.1±1.7 a 9.0 7.9±1.3 a −3.9 -
[1] MARTIN M O, PAQUETTE A, DUPRAS J, et al. The new green revolution: sustainable intensification of agriculture by intercropping[J]. Science of the Total Environment, 2018, 615: 767. DOI: 10.1016/j.scitotenv.2017.10.024.
[2] LAL R. Sustainable intensification of China’s agroecosystems by conservation agriculture[J]. International Soil & Water Conservation Research, 2018, 6(1): 1. DOI: 10.1016/j.iswcr.2017.11.001.
[3] FRANCO J G, KING S R, VOLDER A. Component crop physiology and water use efficiency in response to intercropping[J]. European Journal of Agronomy, 2018, 93: 27. DOI: 10.1016/j.eja.2017.11.005.
[4] DU J B, HAN T F, GAI J Y, et al. Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2018, 17(4): 747. DOI: 10.1016/s2095-3119(17)61789-1.
[5] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403. DOI: 10.13930/j.cnki.cjea.16006 [6] 魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响[J]. 应用生态学报, 2014, 25(2): 441 [7] 苌建峰, 张海红, 李鸿萍, 等. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响[J]. 作物学报, 2016, 42(1): 104. DOI: 10.3724/SP.J.1006.2016.00104 [8] YANG F, LIAO D P, FAN Y F, et al. Effect of narrow-row planting patterns on crop competitive and economic advantage in maize−soybean relay strip intercropping system[J]. Plant Production Science, 2016, 20(1): 1. DOI: 10.1080/1343943x.2016.1224553.
[9] 王建康. 间距对玉米间作豌豆氮素竞争互补的调控效应[D]. 兰州: 甘肃农业大学, 2014. [10] 刘兆新, 刘婷如, 刘妍, 等. 小麦行距配置对套种花生生理特性和产量的影响[J]. 应用生态学报, 2018, 29(6): 1951 [11] YANG F, LIAO D P, WU X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize−soybean relay intercropping systems[J]. Field Crops Research, 2017, 203: 16. DOI: 10.1016/j.fcr.2016.12.007.
[12] 赵建华, 孙建好, 李隆, 等. 改变玉米行距种植对豌豆/玉米间作体系产量的影响[J]. 中国生态农业学报, 2012, 20(11): 1451. DOI: 10.3724/SP.J.1011.2012.01451 [13] LV Y, FRANCIS C, WU P T, et al. Maize-soybean intercropping interactions above and below ground[J]. Crop Science, 2014, 54(3): 914. DOI: 10.2135/cropsci2013.06.0403.
[14] 赵建华, 孙建好, 樊廷录, 等. 玉米行距对大豆/玉米间作产量及种间竞争力的影响[J]. 干旱地区农业研究, 2015, 33(3): 159. DOI: 10.7606/j.issn.1000-7601.2015.03.26 [15] HUANG C D, LIU Q Q, GOU F, et al. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition[J]. Field Crops Research, 2017, 201: 41. DOI: 10.1016/j.fcr.2016.10.021.
[16] SADEGHPOUR A, JAHANZAD E, ESMAEILI A, et al. Forage yield, quality and economic benefit of intercropped barley and annual medic in semi-arid conditions: Additive series[J]. Field Crops Research, 2013, 148: 43. DOI: 10.1016/j.fcr.2013.03.021.
[17] 宋贺, 金文俊, 车钊, 等. 种植行距和品种对玉米根际反硝化菌群丰度和功能的影响[J]. 中国生态农业学报, 2017, 25(3): 391. DOI: 10.13930/j.cnki.cjea.160882 [18] 周锋, 安曈昕, 吴开贤, 等. 间作群体中玉米对马铃薯生长及竞争力的影响[J]. 干旱地区农业研究, 2015, 33(6): 105. DOI: 10.7606/j.issn.1000-7601.2015.06.18 [19] HAMDANI J S, SURADINATA Y R. Effects of row intercropping system of corn and potato and row spacing of corn on the growth and yields of Atlantic potato cultivar planted in medium altitude[J]. Asian Journal of Agricultural Research, 2015, 9(3): 104.
[20] FAN Z W, AN T X, WU K X, et al. Effects of intercropping of maize and potato on sloping land on the water balance and surface runoff[J]. Agricultural Water Management, 2016, 166: 9. DOI: 10.1016/j.agwat.2015.12.006.
[21] MA L, ZHU Q L, GENG C X, et al. Contribution of nutrient uptake and utilization on yield advantage in maize and potato intercropping under different nitrogen application rates[J]. The Journal of Applied Ecology, 2017, 28(4): 1265. DOI: 10.13287/j.1001-9332.201704.026.
[22] KIDANE B Z, HAILU M H, HAILE H T. Maize and potato intercropping: a technology to increase productivity and profitability in Tigray[J]. Open Agriculture, 2017, 2(1): 411. DOI: 10.1515/opag-2017-0044.
[23] WU K X, FULLEN M A, AN T X, et al. Above and below-ground interspecific interaction in intercropped maize and potato: a field study using the ‘target’ technique[J]. Field Crops Research, 2012, 139: 63. DOI: 10.1016/j.fcr.2012.10.002.
[24] BEGUM A A, BHUIYA M S U, HOSSAIN S M A, et al. system productivity of potato+maize intercropping as affected by sowing date[J]. Bangladesh Agronomy Journal, 2016, 19(2): 11. DOI: 10.3329/baj.v19i2.31848.
[25] 朱启林, 向蕊, 汤利, 等. 间作条件下施氮量对马铃薯光合特性的调控作用[J]. 生态学杂志, 2018, 37(5): 1391 [26] 马心灵, 朱启林, 耿川雄, 等. 不同氮水平下作物养分吸收与利用对玉米马铃薯间作产量优势的贡[J]. 应用生态学报, 2017, 28(4): 1265. DOI: 10.13287/j.1001-9332.201704.026 [27] 吴开贤, 安瞳昕, 范志伟, 等. 土壤氮异质性与种间地上竞争对玉米和马铃薯生长的影响[J]. 中国生态农业学报, 2012, 20(12): 1571. DOI: 10.3724/SP.J.1011.2012.01571 [28] ZHANG Y T, LIU J, ZHANG J Z, et al. Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat[J]. PLoS One, 2015, 10(6): e0129245. DOI: 10.1371/journal.pone.0129245.
[29] 杨峰, 娄莹, 廖敦平, 等. 玉米—大豆带状套作行距配置对作物生物量、根系形态及产量的影响[J]. 作物学报, 2015, 41(4): 642. DOI: 10.3724/SP.J.1006.2015.00642 [30] 赵建华, 孙建好, 李隆, 等. 玉米行距变化对间作系统生产力及玉米生长的影响[J]. 农业资源与环境学报, 2017, 34(2): 189. DOI: 10.13254/j.jare.2016.0245 -
期刊类型引用(2)
1. 李金洋,龚殊,杨丹宁,廖心茹,赵鑫. 油樟精油对马铃薯发芽的影响. 中国马铃薯. 2022(04): 341-349 . 百度学术
2. 戴中武,沈立明,吴小倩,黄元贞,翟俊文,吴沙沙. 基于层次分析法对十六种独蒜兰属植物观赏价值综合评价. 北方园艺. 2020(05): 73-79 . 百度学术
其他类型引用(0)