本文排版定稿已在中国知网首发,如需要《中国知网学术期刊网络首发论文出版证书》,可直接在中国知网本稿件的首发页面下载;如果无法下载,请与编辑部联系。
3种食用菌废菌棒生物炭的特性及其吸附巨大芽孢杆菌的性能
探究不同食用菌废菌棒生物炭的理化特性及其吸附巨大芽孢杆菌(Bacillus megaterium)的能力,为食用菌废菌棒的高值化利用提供依据。
以3种食用菌(金针菇、真姬菇、银耳)废菌棒为原料,在700 ℃、CO2或N2氛围下热解2 h制成6种生物炭,对其理化性质进行表征,并通过正交试验研究生物炭对巨大芽孢杆菌的吸附性能。
6种生物炭均呈碱性,产率范围在34%~42%之间,灰分含量在10%~59%之间,碳含量在44%~72%之间;芳香化程度高,均具有利于微生物吸附的官能团;平均孔径为1.92~4.94 nm,孔体积为0.012~0.099 cm3/g,且CO2氛围下热解制备的生物炭,其比表面积和孔体积均大于N2氛围下热解制备的生物炭;CO2氛围下制备的生物炭,其吸附巨大芽孢杆菌的最优条件组合为温度25 ℃、菌炭比10∶1、吸附时间24 h,吸附率均大于93%。
以金针菇废菌棒为原料,在CO2氛围下制备的生物炭,其吸附效果最好,吸附率达95.55%,具有作为载体及进一步应用的潜力。研究结果为食用菌废菌棒的资源化和高值化利用提供了新途径。
Characterization and Performance in Adsorption of Bacillus megaterium of Biochar from Three Edible Fungus Spent Artificial Logs
To investigate the physicochemical properties of biochars made from different edible fungus spent artificial logs and their ability to adsorb Bacillus megaterium, providing a basis for the high-value utilization of edible fungus spent artificial logs.
Three types of edible fungus (Flammulina velutipes, Hypsizygus marmoreus, and Tremella fuciformis) spent artificial logs were used as raw materials, six types of biochars were produced by pyrolysis for two hours at 700 ℃ under CO2 or N2 atmosphere. The biochars were characterized for their physicochemical properties, and the adsorption performance of biochars for B. megaterium was studied through an orthogonal experiment.
All six types of biochars were alkaline, with yields ranging from 34% to 42%, ash content ranging from 10% and 59%, and carbon content ranging from 44% and 72%. The biochars had high aromaticity and functional groups beneficial to microbial adsorption. The average pore size ranged from 1.92 to 4.94 nm, and the pore volume ranged from 0.012 to 0.099 cm3/g. Biochars obtained under CO2 atmosphere had a higher specific surface area and pore volume compared to that obtained under N2 atmosphere. The optimal combination of temperature, fungal suspension-to-biochar ratio, and adsorption time for adsorption of B. megaterium by the biochars derived from CO2 atmosphere were 25 ℃, 10∶1, and 24 hours, respectively, with adsorption rates above 93%.
The biochar made from F. velutipes spent artificial log under CO2 atmosphere have the best adsorption effect, with an adsorption rate of 95.55%, demonstrating its potential as a carrier and for further applications. The results provide a new approach for the resource utilization and high-value application of edible fungus spent artificial logs.
参考文献
[1] | 李致煜, 郭柱, 李显, 等. 生物质“热溶富碳”及其产物利用[J]. 燃料化学学报(中英文), 2023, 51(2): 129. DOI: 10.19906/j.cnki.jfct.2022076. |
[2] | 霍如周, 奚小波, 张翼夫, 等. 碳中和背景下中国农业碳排放现状与发展趋势[J]. 中国农机化学报, 2023, 44(12): 151. DOI: 10.13733/j.jcam.issn.2095-5553.2023.12.023. |
[3] |
WANG W Y, HUANG J C, WU T, et al. Research on the preparation of biochar from waste and its application in environmental remediation[J]. Water, 2023, 15(19): 3387. DOI: 10.3390/w15193387. |
[4] | 李明玉, 丁梧秀, 王新武, 等. 施加生物炭对土壤理化性质的影响及其农业应用[J]. 东北农业大学学报, 2024, 55(1): 79. DOI: 10.19720/j.cnki.issn.1005-9369.2024.01.009. |
[5] | 黄晨阳. 食用菌生物技术研究任重道远[J]. 生物技术通报, 2021, 37(11): 1. DOI: 10.3969/j.issn.1002-5464.2021.11.001. |
[6] | 朱留刚, 孙君, 张文锦. 食用菌产业有机副产物综合利用研究进展[J]. 福建农业学报, 2018, 33(7): 760. DOI: 10.19303/j.issn.1008-0384.2018.07.020. |
[7] | 陈丽媛, 朱万芹, 孙翠焕, 等. 基于农业废弃物培育优质蛹虫草的研究[J]. 微生物学杂志, 2023, 43(6): 75. DOI: 10.3969/j.issn.1005-7021.2023.06.008. |
[8] | 黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能[J]. 环境化学, 2020, 39(4): 1116. DOI: 10.7524/j.issn.0254-6108.2019091604. |
[9] |
KUPPUSAMY S, THAVAMANI P, VENKATESWARLU K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions[J]. Chemosphere, 2017, 168: 944. DOI: 10.1016/j.chemosphere.2016.10.115. |
[10] | 张净然, 王婧瑶, 王钊, 等. 巨大芽孢杆菌对复合污染土壤—苗期小麦中镉砷累积和转运的影响[J]. 河北农业大学学报, 2024, 47(4): 28. DOI: 10.13320/j.cnki.jauh.2024.0051. |
[11] |
LI T, CHANG X X, QIAO Z X, et al. Characterization and genomic analysis of Bacillus megaterium with the ability to degrade aflatoxin B1[J]. Frontiers in Microbiology, 2024, 15: 1407270. DOI: 10.3389/fmicb.2024.1407270. |
[12] |
YU K, XUE Z K, FANG X Z, et al. Effects of biochar inoculation with Bacillus megaterium on rice soil phosphorus fraction transformation and bacterial community dynamics[J]. Rice Science, 2024, 31(4): 361. DOI: 10.1016/j.rsci.2024.04.003. |
[13] |
SUN T, MIAO J B, SALEEM M, et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning[J]. Journal of Hazardous Materials, 2020, 398: 122941. DOI: 10.1016/j.jhazmat.2020.122941. |
[14] |
JIANG Y T, YANG F, DAI M, et al. Application of microbial immobilization technology for remediation of Cr (Ⅵ) contamination: a review[J]. Chemosphere, 2022, 286: 131721. DOI: 10.1016/j.chemosphere.2021.131721. |
[15] |
ZHANG Z Y, FAN Z, ZHANG G L, et al. Application progress of microbial immobilization technology based on biomass materials[J]. Bioresources, 2021, 16(4): 8509. DOI: 10.15376/biores.16.4.zhang. |
[16] | 朱晓丽, 林姝欢, 张星, 等. 生物炭固定化解有机磷菌对Pb2+的吸附行为研究[J]. 环境科学学报, 2023, 43(3): 116. DOI: 10.13671/j.hjkxxb.2022.0260. |
[17] | 叶沁辉, 陈红, 于鑫, 等. 沼渣生物炭的制备及资源化利用研究进展[J]. 化工进展, 2023, 42(12): 6554. DOI: 10.16085/j.issn.1000-6613.2023-0105. |
[18] | 林婷, 李海红, 温家峰. 石油降解菌株的生物炭固定化及性能研究[J]. 化学工程, 2024, 52(5): 6. DOI: 10.3969/j.issn.1005-9954.2024.05.002. |
[19] | 李琋, 王雅璇, 罗廷, 等. 利用生物炭负载微生物修复石油烃—镉复合污染土壤[J]. 环境工程学报, 2021, 15(2): 677. DOI: 10.12030/j.cjee.202003093. |
[20] | 王莹, 林凤翔, 岳星雨, 等. 生物炭固定SM3菌剂的制备及其对三唑酮的降解研究[J]. 农业环境科学学报, 2022, 41(12): 2604. DOI: 10.11654/jaes.2022-1151. |
[21] | 任丽花, 邹秀凤, 黄家庆, 等. 不同热解温度下番茄藤蔓生物炭的理化特性分析[J]. 福建农业学报, 2024, 39(2): 216. DOI: 10.19303/j.issn.1008-0384.2024.02.012. |
[22] | 何家帅, 李新美, 魏跃鹏, 等. 长期深耕秸秆还田配施生物炭对砂姜黑土团聚体及小麦—玉米产量的影响[J]. 农业工程学报, 2024, 40(7): 161. DOI: 10.11975/j.issn.1002-6819.202402001. |
[23] |
WANG L, DOU Z Y, MA C R, et al. Remediation of di(2-ethylhexyl) phthalate (DEHP) contaminated black soil by freeze-thaw aging biochar[J]. Journal of Environmental Sciences, 2024, 135(1): 681. DOI: 10.1016/j.jes.2023.02.012. |
[24] | 胡学玉, 陈窈君, 张沙沙, 等. 磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J]. 农业工程学报, 2018, 34(19): 208. DOI: 10.11975/j.issn.1002-6819.2018.19.027. |
[25] | 王子郡, 黄菁华, 麦建军, 等. 外源有机物料性质对黑土农田土壤微生物碳组分的影响[J]. 植物营养与肥料学报, 2024, 30(5): 980. DOI: 10.11674/zwyf.2023526. |
[26] | 樊洪, 谢珊, 龙天雨, 等. 刺梨果渣生物炭对白菜产量及品质和土壤性质的影响[J]. 环境科学, 2024, 45(6): 3543. DOI: 10.13227/j.hjkx.202306237. |
[27] | 张德俐, 王芳, 易维明, 等. 木质纤维素生物质厌氧发酵沼渣热化学转化利用研究进展[J]. 农业工程学报, 2021, 37(21): 225. DOI: 10.11975/j.issn.1002-6819.2021.21.026. |
[28] | 吴钊峰, 沈超, 孙启花, 等. 生物质碳材料的制备与若干应用研究新进展[J]. 北京工业大学学报, 2023, 49(11): 1232. DOI: 10.11936/bjutxb2022060003. |
[29] | 栗泽红, 宋慧佳, 张新月, 等. 生物炭改性策略及其在铬(Ⅵ)污染修复中的研究进展[J]. 分析化学, 2024, 52(3): 323. DOI: 10.19756/j.issn.0253-3820.231301. |
[30] | 李文杰, 左翔之, 王建, 等. 生物炭施用土壤的固碳减排效应及机制[J]. 中国环境科学, 2023, 43(11): 5913. DOI: 10.19674/j.cnki.issn1000-6923.20230529.017. |
[31] | 王红宁, 黄丽, 清江, 等. 香蒲基生物炭的活化及对VOCs吸附的应用[J]. 高等学校化学学报, 2022, 43(4): 22. DOI: 10.7503/cjcu20210824. |
[32] | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293. DOI: 10.16085/j.issn.1000-6613.2019-1833. |
[33] | 刘艳芳, 高玮, 刘蕊, 等. 铝锆改性生物炭对水体低浓度氟的吸附特性[J]. 环境科学, 2023, 44(4): 2147. DOI: 10.13227/j.hjkx.202205104. |
[34] | 吕贤喆, 常国立, 李传鹏, 等. 枇杷籽生物炭制备、表征及其微生物吸附性能研究[J]. 环境污染与防治, 2023, 45(10): 1374. DOI: 10.15985/j.cnki.1001-3865.2023.10.008. |
[35] |
BRIAO G D, HASHIM M A, CHU K H. The sips isotherm equation: often used and sometimes misused[J]. Separation Science and Technology, 2023, 58(5): 884. DOI: 10.1080/01496395.2023.2167662. |
[36] | 邓子禾, 田飞, 武占省, 等. 改性核桃壳生物炭对枯草芽孢杆菌SL-44的吸附[J]. 农业环境科学学报, 2022, 41(2): 387. DOI: 10.11654/jaes.2021-0583. |
[37] | 刘佳璇, 李法云, 李晓桐, 等. 陶粒—火山岩固定化载体制备及油污土壤修复[J]. 环境科学与技术, 2024, 47(7): 112. DOI: 10.19672/j.cnki.1003-6504.0401.24.338. |
[38] | 干钰霄, 曹祺. 生物炭负载铁锰氧化物活化过硫酸氢钾降解罗丹明B[J]. 西南大学学报(自然科学版), 2024, 46(7): 127. DOI: 10.13718/j.cnki.xdzk.2024.07.013. |