• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

猪流行性腹泻病毒在抗体选择压下的基因变异

余蕊, 高艺, 孙永科, 张恒, 杨玉艾

余蕊, 高艺, 孙永科, 等. 猪流行性腹泻病毒在抗体选择压下的基因变异[J]. 云南农业大学学报(自然科学), 2025, 40(1): 1−7. DOI: 10.12101/j.issn.1004-390X(n).202405029
引用本文: 余蕊, 高艺, 孙永科, 等. 猪流行性腹泻病毒在抗体选择压下的基因变异[J]. 云南农业大学学报(自然科学), 2025, 40(1): 1−7. DOI: 10.12101/j.issn.1004-390X(n).202405029
YU Rui, GAO Yi, SUN Yongke, et al. Genetic Variation of Porcine Epidemic Diarrhea Virus under Antibody Selective Pressure[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202405029
Citation: YU Rui, GAO Yi, SUN Yongke, et al. Genetic Variation of Porcine Epidemic Diarrhea Virus under Antibody Selective Pressure[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202405029

猪流行性腹泻病毒在抗体选择压下的基因变异

基金项目: 国家自然科学基金项目(32160845)。
详细信息
    作者简介:

    余蕊(1998—),女,云南东川人,在读硕士研究生,主要从事分子生物学研究。E-mail:1403121690@qq.com

    通信作者:

    杨玉艾(1978—),女,陕西咸阳人,博士,教授,主要从事分子病原学与分子免疫学研究。E-mail:364892962@qq.com

  • 中图分类号: S852.651

摘要:
目的 

研究猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)在抗体选择压下的分子变异。

方法 

将PEDV Sinder02株在添加适量抗体和不添加抗体的Vero E6细胞上连续传代40代,对传代前后毒株的全基因组序列进行扩增、测序、拼接和分析。

结果 

第40代有抗体组和无抗体组全基因组核苷酸发生突变的位点累计分别为71和50个,氨基酸发生突变的位点累计分别为50和26个。有抗体组S基因的非同义突变(nonsynonymous mutation,NS)与同义突变(synonymous mutation,S)的比值(NS/S值)为4.25,ORF3基因的NS/S值为3.67。有抗体组S基因出现6个稳定突变位点,其中4个与已知抗原表位有关;ORF3基因出现5个稳定突变位点,其中3个与已知抗原表位有关。有抗体组、无抗体组与原代病毒序列的同源性逐代降低,且有抗体组与原代病毒之间的差距更大、遗传距离更远。

结论 

首次证明抗体选择压对PEDV Sinder02株的S基因和ORF3基因起到促变异作用。研究结果为探索PEDV变异提供了理论基础,也为新型PEDV疫苗的研制提供了科学参考。

 

Genetic Variation of Porcine Epidemic Diarrhea Virus under Antibody Selective Pressure

Abstract:
Purpose 

To study the molecular variation of porcine epidemic diarrhea virus (PEDV) under antibody selective pressure.

Methods 

PEDV Sinder02 strain was continuously passaged for 40 generations on Vero E6 cells with and without the addition of appropriate antibodies, and the whole genome sequences of the virulent strains before and after passaging were amplified, sequenced, spliced, and analyzed.

Results 

In the 40th generation, the cumulative number of genome nucleotide mutation sites respectively was 71 and 50 for the group with antibody (group A) and the group without antibody (group NA), and the cumulative number of amino acid mutation sites respectively was 50 and 26 for the group A and the group NA. The ratio of nonsynonymous (NS) to synonymous (S) in S gene of the group A was 4.25, and the NS/S value in ORF3 gene was 3.67. In the group A, there were six stable mutation sites in S gene, four of which were associated with known epitopes; and there were five stable mutation sites in ORF3 gene, three of which were associated with known epitopes. The sequence homology between the original virus and both the group A and the group NA were decreased from generation to generation, and the differences between the group A and the original virus was greater, with a greater genetic distance.

Conclusion 

The first proof that antibody selective pressure plays a role in promoting variation of the S gene and ORF3 gene of PEDV Sinder02 strain. The results of the study provide a theoretical basis for exploring the variation of PEDV and also provide a scientific reference for the development of new PEDV vaccines.

 

参考文献

  • [1]

    CHEN J F, WANG C B, SHI H Y, et al. Complete genome sequence of a Chinese virulent porcine epidemic diarrhea virus strain[J]. Journal of Virology, 2011, 85(21): 11538. DOI: 10.1128/JVI.06024-11.

    [2]

    LEE C H. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus[J]. Virology Journal, 2015, 12: 193. DOI: 10.1186/s12985-015-0421-2.

    [3]

    LI F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies[J]. Journal of Virology, 2015, 89(4): 1954. DOI: 10.1128/JVI.02615-14.

    [4]

    LIN F, ZHANG H Y, LI L Q, et al. PEDV: insights and advances into types, function, structure, and receptor recognition[J]. Viruses, 2022, 14(8): 1744. DOI: 10.3390/v14081744.

    [5]

    WANG K, LU W, CHEN J F, et al. PEDV ORF3 encodes an ion channel protein and regulates virus production[J]. FEBS Letters, 2012, 586(4): 389. DOI: 10.1016/j.febslet.2012.01.005.

    [6]

    JANTRAPHAKORN Y, VIRIYAKITKOSOL R, JONGKAEWWATTANA A, et al. Interaction between PEDV and its hosts: a closer look at the ORF3 accessory protein[J]. Frontiers in Veterinary Science, 2021, 8: 744276. DOI: 10.3389/fvets.2021.744276.

    [7]

    GUO J H, FANG L R, YE X, et al. Evolutionary and genotypic analyses of global porcine epidemic diarrhea virus strains[J]. Transboundary Emerging Disease, 2019, 66(1): 112. DOI: 10.1111/tbed.12991.

    [8]

    ZHANG Y Z, CHEN Y W, ZHOU J, et al. Porcine epidemic diarrhea virus: an updated overview of virus epidemiology, virulence variation patterns and virus-host interactions[J]. Viruses, 2022, 14(11): 2434. DOI: 10.3390/v14112434.

    [9]

    VENUGOPAL K, SMITH L M, HOWES K, et al. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in the env gene[J]. Journal of General Virology, 1998, 79(4): 764. DOI: 10.1099/0022-1317-79-4-757.

    [10]

    CUI Z Z, DU Y, ZHANG Z, et al. Comparison of Chinese field strains of avian leukosis subgroup J viruses with prototype strain HPRS-103 and United States strains[J]. Avian Disease, 2003, 47(4): 1322. DOI: 10.1637/6085.

    [11]

    HUELSENBECK J P, RANNALA B. Detecting correlation between characters in a comparative analysis with uncertain phylogeny[J]. Evolution, 2003, 57(6): 1246. DOI: 10.1111/j.0014-3820.2003.tb00332.x.

    [12]

    GAO Q, ZHENG Z Z, WANG H, et al. The new porcine epidemic diarrhea virus outbreak may mean that existing commercial vaccines are not enough to fully protect against the epidemic strains[J]. Frontiers in Veterinary Science, 2021, 8: 697839. DOI: 10.3389/fvets.2021.697839.

    [13] 董宣. 我国鸡群禽白血病病毒的多样性、致病性及其在抗体选择压下准种演变[D]. 青岛: 山东农业大学, 2015.
    [14] 娄本红, 朱秀同, 孙贝贝, 等. 抗体选择压作用下H9N2亚型禽流感病毒HA基因的变异[J]. 微生物学报, 2009, 49(7): 957. DOI: 10.13343/j.cnki.wsxb.2009.07.018.
    [15] 姜厚涛. 抗体选择压下口蹄疫病毒A/HUBWH株遗传变异研究[D]. 长春: 吉林农业大学, 2013.
    [16] 何羽婷, 巩艳艳, 赵鹏, 等. 抗体选择压作用下新城疫病毒HNF基因的演化及其抗原性变异的比较分析[J]. 病毒学报, 2012, 28(5): 494. DOI: 10.13242/j.cnki.bingduxuebao.002309.
    [17] 赵鹏, 马诚太, 崔治中. 猪繁殖与呼吸综合征病毒在抗体免疫选择压下的变异[J]. 中国科学: 生命科学, 2010, 40(10): 960. DOI: 10.1360/zc2010-40-10-952.
    [18]

    KIM S H, LEE J M, JUNG J, et al. Genetic characterization of porcine epidemic diarrhea virus in Korea from 1998 to 2013[J]. Archives of Virology, 2015, 160(4): 1063. DOI: 10.1007/s00705-015-2353-y.

    [19]

    LEE S, SON K Y, NOH Y H, et al. Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus[J]. Veterinary Microbiology, 2017, 207: 248. DOI: 10.1016/j.vetmic.2017.06.019.

    [20]

    KIRCHDOERFER R N, BHANDARI M, MARTINI O, et al. Structure and immune recognition of the porcine epidemic diarrhea virus spike protein[J]. Structure, 2021, 29(4): 386. DOI: 10.1016/j.str.2020.12.003.

    [21]

    JACKSON C B, FARZAN M, CHEN B, et al. Mechanisms of SARS-CoV-2 entry into cells[J]. Nature Reviews Molecular Cell Biology, 2022, 23(1): 5. DOI: 10.1038/s41580-021-00418-x.

    [22]

    WONGTHIDA P, LIWNAREE B, WANASEN N, et al. The role of ORF3 accessory protein in replication of cell-adapted porcine epidemic diarrhea virus (PEDV)[J]. Archives of Virology, 2017, 162(9): 2553. DOI: 10.1007/s00705-017-3390-5.

  • 图(4)  /  表(3)
    计量
    • 文章访问数:  41
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 通信作者:  杨玉艾 364892962@qq.com
    • 收稿日期:  2024-05-14
    • 修回日期:  2025-03-03
    • 网络首发日期:  2025-03-24

    目录

      /

      返回文章
      返回