• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

基于主成分分析法和正定矩阵因子分解法的洱海污染源解析

李明民, 王俊松, 和弦, 鲍智弥, 杨顺涛, 孔燕, 冯海涛, 唐诚

李明民, 王俊松, 和弦, 等. 基于主成分分析法和正定矩阵因子分解法的洱海污染源解析[J]. 云南农业大学学报(自然科学), 2025, 40(0): 1−8. DOI: 10.12101/j.issn.1004-390X(n).202405028
引用本文: 李明民, 王俊松, 和弦, 等. 基于主成分分析法和正定矩阵因子分解法的洱海污染源解析[J]. 云南农业大学学报(自然科学), 2025, 40(0): 1−8. DOI: 10.12101/j.issn.1004-390X(n).202405028
LI Mingmin, WANG Junsong, HE Xian, et al. Analysis of Pollution Sources in Erhai Lake Based on Principal Component Analysis and Positive Matrix Factorization[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202405028
Citation: LI Mingmin, WANG Junsong, HE Xian, et al. Analysis of Pollution Sources in Erhai Lake Based on Principal Component Analysis and Positive Matrix Factorization[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202405028

基于主成分分析法和正定矩阵因子分解法的洱海污染源解析

基金项目: 国家自然科学基金联合基金重点支持项目(U2102207);云南省科技厅科技计划项目基础研究专项 (202401AT070307)。
详细信息
    作者简介:

    李明民(1996—),男,云南昭通人,在读博士研究生,助理工程师,主要从事流域农业面源污染研究。E-mail:694817258@qq.com

    通信作者:

    王俊松(1982—),男,云南昆明人,硕士,正高级工程师,主要从事水环境模型模拟研究。E-mail:junsong_wang@qq.com

摘要:
目的 

解析洱海污染物来源并量化源贡献,为流域水环境保护决策提供科学依据。

方法 

基于洱海多年水质监测数据,分析其污染特征,并使用主成分分析法(principal component analysis,PCA)和正定矩阵因子分解法(positive matrix factorization,PMF)进行污染来源及其贡献率解析。

结果 

洱海2015—2021年综合营养状态指数整体呈波动上升趋势,雨季营养状态指数显著高于旱季,9、10月处于最大值。PCA和PMF源解析结果表明:按贡献率从大到小排序,造成洱海水体污染的主要原因为农田面源、畜禽养殖、生活污水和气象因素。

结论 

洱海处于中营养状态,但整体呈现营养化趋势,污染主要集中在雨季,应当加强汛期污染防控。主要污染源为农业面源,应加强农业面源系统治理,形成“源头减量—过程拦截—养分再利用—末端修复”的全过程防控体系。其中,源头部分是重点,应当调整农业种植结构,转变农业生产方式,提高植物养分利用效率,推动流域实现农业绿色高质量发展。

 

Analysis of Pollution Sources in Erhai Lake Based on Principal Component Analysis and Positive Matrix Factorization

Abstract:
Purpose 

To analyze the sources of pollutants in Erhai Lake and quantify their contributions, providing a scientific basis for watershed water environment protection.

Methods 

Based on the water quality monitoring data of Erhai Lake for many years, the pollution characteristics were analyzed, and the principal component analysis (PCA) and positive matrix factorization (PMF) were used to analyze the pollution sources and their contribution rates.

Results 

The comprehensive nutritional status index of Erhai Lake showed a fluctuating upward trend from 2015 to 2021. The nutritional status index in the rainy season was significantly higher than that in the dry season, and it was at the maximum in September and October. PCA and PMF source analysis results showed that the main reasons for water pollution in Erhai Lake, sorted from the highest contribution rate to the lowest, were agricultural non-point source, livestock and poultry breeding, domestic sewage and meteorological factor.

Conclusion 

Erhai Lake is in a mesotropher, but the overall trend is trophic. The pollution is mainly concentrated in rainy season, and the pollution prevention and control in the flood season should be strengthened. The main pollution source is agricultural non-point source, and the treatment of agricultural non-point source system should be strengthened to form a whole process prevention and control system of “source reduction-process interception-nutrient reuse-end restoration”. In the source section, the focus is on adjusting the agricultural planting structure, transforming the mode of agricultural production, improving the efficiency of plant nutrient utilization, and the realization of green and high-quality development of agriculture in the basin.

 

参考文献

  • [1] 刘博, 张展, 许增贵, 等. 河流水体污染空间分布及污染源解析: 以浑河沈阳段为例[J]. 环境保护科学, 2020, 46(3): 56. DOI: 10.16803/j.cnki.issn.1004-6216.2020.03.010.
    [2] 樊凯, 裴文娟, 余凤娇, 等. 云南省典型高原湖泊流域耕地自然质量等空间分布特征研究[J]. 云南农业大学学报(自然科学), 2018, 33(3): 529. DOI: 10.12101/j.issn.1004-390X(n).201706025.
    [3] 李晓琳, 帅永芳, 张翼, 等. 基于GIS的洱海流域氮素时空分异特征及源结构解析[J]. 湖泊科学, 2022, 34(3): 816. DOI: 10.18307/2022.0309.
    [4] 翟玥, 尚晓, 沈剑, 等. SWAT模型在洱海流域面源污染评价中的应用[J]. 环境科学研究, 2012, 25(6): 666. DOI: 10.13198/j.res.2012.06.61.zhaiy.017.
    [5] 王明杰, 余斌, 卓蓉蓉, 等. 洱海流域水环境污染与水环境变化的关联分析[J]. 华中师范大学学报(自然科学版), 2020, 54(4): 707. DOI: 10.19603/j.cnki.1000-1190.2020.04.021.
    [6] 韦晓雪, 李晓琳, 郑毅. 基于输出系数模型的1998—2016年洱海流域磷素时空变化特征分析[J]. 农业环境科学学报, 2020, 39(1): 171. DOI: 10.11654/jaes.2019-0389.
    [7] 高贵全, 余建新, 邱苑梅. 云南省水环境的非点源污染及其控制[J]. 云南农业大学学报, 2001, 16(2): 132. DOI: 10.16211/j.issn.1004-390x(n).2001.02.016.
    [8] 董騄睿, 胡文友, 黄标, 等. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析[J]. 中国环境科学, 2015, 35(7): 2103. DOI: 10.3969/j.issn.1000-6923.2015.07.031.
    [9] 冯小琼, 彭康, 凌镇浩, 等. 香港地区2005—2010年VOCs污染来源解析及特征研究[J]. 环境科学学报, 2013, 33(1): 173. DOI: 10.13671/j.hjkxxb.2013.01.027.
    [10]

    MOSTERT M M, AYOKO A G. Application of chemometrics to analysis of soil pollutants[J]. Trends in Analytical Chemistry, 2010, 29(5): 435. DOI: 10.1016/j.trac.2010.02.009.

    [11]

    VENK S, CHUNG S Y, RAMKUMAR T, et al. Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River Estuary in Tamil Nadu, India[J]. Environmental Monitoring and Assessment, 2015, 187(8): 505. DOI: 10.1007/s10661-015-4709-x.

    [12]

    ZUO Q, DUAN Y H, YANG Y, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China[J]. Environmental Pollution, 2007, 147(2): 307. DOI: 10.1016/j.envpol.2006.05.029.

    [13]

    HENRY R C. History and fundamentals of multivariate air quality receptor models[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 37. DOI: 10.1016/s0169-7439(96)00048-2.

    [14]

    HENYY R C. Multivariate receptor modeling by N-dimensional edge detection[J]. Chemometrics and Intelligent Laboratory Systems, 2003, 65(2): 179. DOI: 10.1016/s0169-7439(02)00108-9.

    [15]

    RIZZO M J, SCHEFF P A. Assessing ozone networks using positive matrix factorization[J]. Environmental Progress, 2004, 23(2): 117. DOI: 10.1002/ep.10018.

    [16] 匡荟芬, 胡春华, 吴根林, 等. 结合主成分分析法(PCA)和正定矩阵因子分解法(PMF)的鄱阳湖丰水期表层沉积物重金属源解析[J]. 湖泊科学, 2020, 32(4): 964. DOI: 10.18307/2020.0406.
    [17]

    TAN J H, DUAN J C, CHAI F H, et al. Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing[J]. Atmospheric Research, 2014, 139: 90. DOI: 10.1007/s11869-011-0169-9.

    [18]

    VU C T, LIN C, SHERN C C, et al. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan[J]. Ecological Indicators, 2017, 82: 32. DOI: 10.1016/j.ecolind.2017.06.008.

    [19]

    COMERO S, VACCARO S, LOCORO G, et al. Characterization of the Danube River sediments using the PMF multivariate approach[J]. Chemosphere, 2014, 95(1): 332. DOI: 10.1016/j.chemosphere.2013.09.028.

    [20]

    HUANG S L, RAHN K A, ARIMOTO R. Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island[J]. Atmospheric Environment, 1999, 33(14): 2169. DOI: 10.1016/s1352-2310(98)00324-0.

    [21]

    VACCARO S, SOBIECA E, CONTINI S, et al. The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils[J]. Chemosphere, 2007, 69(7): 1055. DOI: 10.1016/j.chemosphere.2007.04.032.

    [22] 温玲, 徐建平. EPA PMF 5.0在浦东新区降水源解析中的使用研究[J]. 环境科学与管理, 2016, 41(1): 117. DOI: 10.3969/j.issn.1673-1212.2016.01.033.
    [23] 赵雨顺. 拉萨河流域沉积物重金属含量分析及家庭用水健康风险评价[D]. 天津: 天津大学, 2018.
    [24]

    PAATERO P, HOPKE P K. Discarding or downweighting high-noise variables in factor analytic models[J]. Analytica Chimica Acta, 2003, 490(1): 277. DOI: 10.1016/S0003-2670(02)01643-4.

    [25]

    BHUIYAN M A, DAMPARE S B, ISLAM M A, et al. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices[J]. Environmental Monitoring & Assessment, 2015, 187(1): 4075. DOI: 10.1007/s10661-014-4075-0.

    [26] 华兆晖, 李锐, 杨智, 等. 2017—2022年洱海水体营养状态的时空变化趋势及其成因分析[J]. 湖泊科学, 2024, 36(6): 1639. DOI: 10.18307/2024.0611.
    [27] 安国英, 郭兆成, 叶佩. 云南大理地区1989—2019年期间气候变化及对洱海水质的影响[J]. 现代地质, 2022, 36(2): 406. DOI: 10.19657/j.geoscience.1000-8527.2021.102.
    [28] 张倩, 李国强, 诸葛亦斯, 等. 改进的模糊综合评价法在洱海水质评价中的应用[J]. 中国水利水电科学研究院学报, 2019, 17(3): 226. DOI: 10.13244/j.cnki.jiwhr.2019.03.009.
    [29] 黄明雨. 环洱海主要入湖河流水质特征及入湖污染负荷估算[J]. 人民长江, 2022, 53(1): 61. DOI: 10.16232/j.cnki.1001-4179.2022.01.010.
    [30] 马巍, 苏建广, 杨洋, 等. 洱海水质演变特征及主要影响因子分析[J]. 中国水利水电科学研究院学报, 2022, 20(2): 112. DOI: 10.13244/j.cnki.jiwhr.20200248.
    [31] 项颂, 吴越, 吕兴菊, 等. 洱海流域农业面源污染空间分布特征及分类控制策略[J]. 环境科学研究, 2020, 33(11): 2474. DOI: 10.13198/j.issn.1001-6929.2020.10.09.
    [32]

    YANG B, ZHOU L L, XUE N D, et al. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: comparison of three receptor models[J]. Science of the Total Environment, 2013, 443: 31. DOI: 10.1016/j.scitotenv.2012.10.094.

    [33] 石宏博, 黄玥, 李杰, 等. 洱海水质评价及污染物来源分析[J]. 水电能源科学, 2021, 39(10): 72.
  • 图(3)  /  表(2)
    计量
    • 文章访问数:  72
    • PDF下载量:  3
    • 被引次数: 0
    出版历程

    目录

      /

      返回文章
      返回