满天星组培苗叶际内生细菌对聚乙二醇胁迫的响应
研究聚乙二醇 (polyethylene glycol,PEG)胁迫对满天星(Gypsophila paniculata L.)组培苗叶际内生细菌群落多样性的影响,为通过改善植物微生物组提高植物抗渗透压逆境的能力提供理论依据。
以满天星组培苗为研究材料,先用不同质量分数(0%、5%、20%)的PEG-6000对其进行胁迫处理,再采用高通量测序技术进行16S rDNA扩增子测序,分析满天星组培苗叶际内生细菌群落的结构和组成。
从满天星组培苗样本中共检测到705个操作分类单元,分别注释到35门59纲115目183科238属。满天星腋芽转移叶际微生物组和保持微生物多样性的能力较强。5% PEG对满天星叶际内生细菌群落多样性的影响不显著;20% PEG胁迫处理的细菌群落多样性显著降低,细菌群落的共现网络也受到严重破坏。经PEG胁迫后,变形菌门(Proteobacteria)的相对丰度明显升高,厚壁菌门(Firmicutes)的相对丰度明显降低。
低质量分数PEG胁迫会加剧细菌群落之间的竞争,高质量分数PEG胁迫则会显著降低植物叶际内生细菌群落的多样性。
Response of Leaf Endophytic Bacteria in Gypsophila paniculata L. Tissue Culture Seedlings to Polyethylene Glycol Stress
To study the effects of polyethylene glycol (PEG) stress on the diversity of leaf endophytic bacteria in Gypsophila paniculata L. tissue culture seedlings, providing theoretical basis for improving plant resistance to osmotic stress by improving plant microbiome.
The tissue culture seedlings of G. paniculata were used as research materials, different mass fractions of PEG-6000 (0%, 5%, 20%) were used for stress treatment of the seedlings first, and then the structure and composition of the leaf endophytic bacteria community were investigated by 16S rDNA amplicon sequencing.
A total of 705 operational taxonomic units were detected from the samples of the seedlings, which were belong to 35 phyla, 59 classes, 115 orders, 183 families, and 238 genera. Axillary buds of G. paniculata had a high capacity to transfer the phyllosphere bacteria and maintain microbial diversity. The effect of 5% PEG on the leaf endophytic bacteria diversity was not significant; the bacterial diversity under 20% PEG stress was significantly reduced, and the co-occurrence network of the bacterial was also severely disrupted. After PEG stress, the relative abundance of Proteobacteria increased obviously, while the relative abundance of Firmicutes decreased obviously.
Low mass fraction PEG stress will intensify the competition between bacterial communities, while high mass fraction PEG stress will significantly reduce the diversity of leaf endophytic bacteria community.
参考文献
[1] |
TRIVEDI P, LEACH J E, TRINGE S G, at al. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607. DOI: 10.1038/s41579-020-0412-1. |
[2] |
MÜLLER D B, VOGEL C, BAI Y, et al. The plant microbiota: systems-level insights and perspectives[J]. Annual Review of Genetics, 2016, 50: 211. DOI: 10.1146/annurev-genet-120215-034952. |
[3] |
COMPANT S, SAMAD A, FAIST H, et al. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application[J]. Journal of Advanced Research, 2019, 19: 29. DOI: 10.1016/j.jare.2019.03.004. |
[4] |
ABDELFATTAH A, WISNIEWSKI M, SCHENA L, et al. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root[J]. Environmental Microbiology, 2021, 23(4): 2199. DOI: 10.1111/1462-2920.15392. |
[5] |
BRADER G, COMPANT S, VESCIO K, et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes[J]. Annual Review of Phytopathology, 2017, 55(1): 61. DOI: 10.1146/annurev-phyto-080516-035641. |
[6] |
AGLER M T, RUHE J, KROLL S, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology, 2016, 14(1): e1002352. DOI: 10.1371/journal.pbio.1002352. |
[7] |
VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, et al. The importance of the microbiome of the plant holobiont[J]. New Phytologist, 2015, 206(4): 1196. DOI: 10.1111/nph.13312. |
[8] |
SÁNCHEZ-CAÑIZARES C, JORRÍN B, POOLE P S, et al. Understanding the holobiont: the interdependence of plants and their microbiome[J]. Current Opinion in Microbiology, 2017, 38: 188. DOI: 10.1016/j.mib.2017.07.001. |
[9] |
MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5): 634. DOI: 10.1111/1574-6976.12028. |
[10] |
KHAN M A, ASAF S, KHAN A L, et al. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants[J]. Plant Biology, 2020, 22(5): 850. DOI: 10.1111/plb.13124. |
[11] |
VORHOLT J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12): 828. DOI: 10.1038/nrmicro2910. |
[12] |
RUINEN J. Occurrence of Beijerinckia species in the ‘phyllosphere’[J]. Nature, 1956, 177: 220. DOI: 10.1038/177220a0. |
[13] |
SOHRABI R, PAASCH B C, LIBER J A, et al. Phyllosphere microbiome[J]. Annual Review of Plant Biology, 2023, 74: 539. DOI: 10.1146/annurev-arplant-102820-032704. |
[14] |
KWON Y, LEE J T, KIM H S, et al. Comparative tomato flower and pollinator hive microbial communities[J]. Journal of Plant Diseases and Protection, 2018, 125: 115. DOI: 10.1007/s41348-017-0090-z. |
[15] |
SINGH P, SANTONI S, THIS P, et al. Genotype-environment interaction shapes the microbial assemblage in grapevine’s phyllosphere and carposphere: an NGS approach[J]. Microorganisms, 2018, 6(4): 96. DOI: 10.3390/microorganisms6040096. |
[16] |
LEVEAU J H. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome[J]. Current Opinion in Microbiology, 2019, 49: 41. DOI: 10.1016/j.mib.2019.10.002. |
[17] | 邓珍, 徐建飞, 段绍光, 等. PEG-8000模拟干旱胁迫对11个马铃薯品种的组培苗生长指标的影响[J]. 华北农学报, 2014, 29(5): 99. DOI: 10.7668/hbnxb.2014.05.017. |
[18] |
VERSLUES P E, OBER E S, SHARP R E. Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions[J]. Plant Physiology, 1998, 116(4): 1403. DOI: 10.1104/pp.116.4.1403. |
[19] | 中国科学院中国植物志编辑委员会. 中国植物志: 第26卷[M]. 北京: 科学出版社, 1996. |
[20] | 程英. 满天星重瓣花形成的关键基因挖掘与其分子设计育种应用[D]. 昆明: 云南大学, 2022. |
[21] |
MICHEL B E, KAUFMANN M R. The osmotic potential of polyethylene glycol 6000[J]. Plant Physiology, 1973, 51(5): 914. DOI: 10.1104/pp.51.5.914. |
[22] |
LI N, LI X, SHI Z Y, et al. Response of high-, mid- and low-abundant taxa and potential pathogens to eight disinfection methods and their interactions in domestic hot water system[J]. Science of the Total Environment, 2020, 749: 141440. DOI: 10.1016/j.scitotenv.2020.141440. |
[23] |
AL-QUWAIE D A H, ALAMOUDI S A. Microbial signatures in the rhizosphere and surrounding bulk soils and differential abundance due to watering for sweet Indian mallow (Abutilon fruticosum)[J]. Applied Ecology and Environmental Research, 2022, 20(2): 1503. DOI: 10.15666/aeer/2002_15031549. |
[24] |
DONG W, LIU H Y, NING Z S, et al. Inoculation with Bacillus cereus DW019 modulates growth, yield and rhizospheric microbial community of cherry tomato[J]. Agronomy, 2023, 13(6): 1458. DOI: 10.3390/agronomy13061458. |
[25] |
HAKOBYAN A, VELTE S, SICKEL W, et al. Tillandsia landbeckii phyllosphere and laimosphere as refugia for bacterial life in a hyperarid desert environment[J]. Microbiome, 2023, 11(1): 246. DOI: 10.1186/s40168-023-01684-x. |
[26] |
XU L, NAYLOR D, DONG Z B, et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences, 2018, 115(18): 4284. DOI: 10.1073/pnas.1717308115. |
[27] |
BECHTOLD E K, RYAN S, MOUGHAN S E, et al. Phyllosphere community assembly and response to drought stress on common tropical and temperate forage grasses[J]. Applied and Environment Microbiology, 2021, 87(17): e0089521. DOI: 10.1128/AEM.00895-21. |
[28] |
DEBRAY R, SOCOLAR Y, KAULBACH G, et al. Water stress and disruption of mycorrhizas induce parallel shifts in phyllosphere microbiome composition[J]. New Phytologist, 2022, 234(6): 2018. DOI: 10.1111/nph.17817. |
[29] |
LI F, HE X H, SUN Y Y, et al. Distinct endophytes are used by diverse plants for adaptation to karst regions[J]. Scientific Reports, 2019, 9(1): 5246. DOI: 10.1038/s41598-019-41802-0. |
[30] |
DUTTA S, KIM Y S, LEE Y H. Characteristics of rhizosphere and endogenous bacterial community of Ulleung-sanmaneul, an endemic plant in Korea: application for alleviating salt stress[J]. Scientific Reports, 2022, 12(1): 21124. DOI: 10.1038/s41598-022-25731-z. |