外源磷酸酶对玉米磷吸收及红壤磷活化的影响
探讨添加不同外源磷酸酶对玉米磷吸收和红壤磷活化的影响。
通过盆栽试验,以不添加酶的常规种植为对照(CK),研究低磷红壤中添加外源酸性磷酸酶(acid phosphatase,ACP)、碱性磷酸酶(alkaline phosphatase,ALP)和植酸酶(phytase,PHY)对玉米根际土壤酶活性、土壤磷库组分及玉米磷吸收的影响。
外源添加ACP、ALP和PHY处理的玉米根际ACP活性分别提高24.4%、19.6%和69.8%,玉米根际ALP活性分别提高16.8%、19.2%和20.9%;外源添加PHY处理的土壤PHY活性显著提高95.3%。外源添加ACP和PHY处理的玉米磷累积量分别显著增加31.6%和66.2%,干物质量分别显著增加15.6%和38.7%;而外源添加ALP无显著促进作用。外源添加PHY处理对土壤磷组分影响最大,其次为ACP和ALP。与CK相比,PHY处理的玉米根际土壤NaHCO3-Po和NaOH-Po分别显著降低13.9%和6.8%,Resin-P和NaHCO3-Pi分别显著增加337.8%和65.2%;与ACP和ALP处理相比,PHY处理的Resin-P分别显著增加90.1%和104.3%,NaHCO3-Pi分别显著增加30.6%和45.2%,NaHCO3-Po分别显著降低8.8%和11.4%,NaOH-Po分别显著降低3.5%和4.4%。NaHCO3-Pi、NaHCO3-Po和Resin-P对红壤有效磷的相对贡献率分别为10.0%、8.7%和8.4%。
外源添加PHY和ACP可显著促进红壤有机磷(NaHCO3-Po、NaOH-Po)转化为水溶性无机磷(Resin-P)和有效态无机磷(NaHCO3-Pi),增加玉米对磷的吸收利用,在促进玉米磷吸收和红壤磷活化过程中发挥重要作用。
Effect of Exogenous Phosphatases Addition on Phosphorus Uptake by Maize and Phosphorus Activation in Red Soil
To investigate the effects of different exogenous phosphatase addition on phosphorus (P) uptake by maize and P activation in red soil.
Through a pot experiment, conventional cultivation without enzyme addition was used as the control (CK) to investigate the effects of adding exogenous acid phosphatase (ACP), alkaline phosphatase (ALP), and phytase (PHY) to low-P red soil on the rhizosphere soil enzyme activity, soil P pool fractions, and P uptake by maize.
The addition of exogenous ACP, ALP, and PHY increased ACP activity in the maize rhizosphere by 24.4%, 19.6%, and 69.8%, respectively; increased ALP activity by 16.8%, 19.2%, and 20.9%, respectively. The addition of exogenous PHY significantly increased PHY activity in the soil by 95.3%. Exogenous addition of ACP and PHY treatments significantly increased maize P accumulation by 31.6% and 66.2%, respectively, and dry matter weight by 15.6% and 38.7%, respectively; while exogenous ALP showed no significant promoting effect. The PHY treatment had the greatest impact on soil P fractions, followed by ACP and ALP. Compared to CK, the PHY treatment significantly reduced NaHCO3-Po and NaOH-Po in maize rhizosphere soil by 13.9% and 6.8%, respectively, and significantly increased Resin-P and NaHCO3-Pi by 337.8% and 65.2%, respectively. Compared to ACP and ALP treatments, the PHY treatment significantly increased Resin-P by 90.1% and 104.3%, NaHCO3-Pi by 30.6% and 45.2%, and significantly reduced NaHCO3-Po by 8.8% and 11.4%, and NaOH-Po by 3.5% and 4.4%, respectively. The relative contribution rate of NaHCO3-Pi, NaHCO3-Po and Resin-P to available P in red soil were 10.0%, 8.7% and 8.4%, respectively.
The addition of exogenous PHY and ACP significantly promotes the conversion of organic P (NaHCO3-Po and NaOH-Po) in red soil into water-soluble inorganic P (Resin-P) and available inorganic P (NaHCO3-Pi), enhancing P uptake and utilization by maize. These enzymes play a crucial role in promoting maize P uptake and P activation in red soil.
-
Keywords:
- exogenous addition /
- phosphatase /
- phosphorus fraction /
- phosphorus uptake /
- low phosphorus red soil
参考文献
[1] |
XU X H, WANG Y L, ZHANG H L, et al. Soil phosphorus storage capacity as affected by repeated phosphorus addition in an Ultisol[J]. Communications in Soil Science and Plant Analysis, 2020, 51: 1960. DOI: 10.1080/00103624.2020.1813751. |
[2] |
YAN X J, CHEN X H, MA C C, et al. What are the key factors affecting maize yield response to and agronomic efficiency of phosphorus fertilizer in China?[J]. Field Crops Research, 2021, 270: 108221. DOI: 10.1016/j.fcr.2021.108221. |
[3] |
TANG H L, CHEN X Y, GAO Y J, et al. Alteration in root morphological and physiological traits of two maize cultivars in response to phosphorus deficiency[J]. Rhizosphere, 2020, 14: 100201. DOI: 10.1007/s13593-011-0053-x. |
[4] |
ELRYS A S, DESOLY E S M, ALI A, et al. Sub-Saharan Africa’s food nitrogen and phosphorus footprints: a scenario analysis for 2050[J]. Science of the Total Environment, 2021, 752: 141964. DOI: 10.1016/j.scitotenv.2020.141964. |
[5] |
ZHANG Y L, LI Y, WANG S Z, et al. Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation restoration[J]. Ecological Engineering, 2021, 164(3): 106208. DOI: 10.1016/j.ecoleng.2021.106208. |
[6] | 张连娅, 王瑞雪, 郑毅, 等. 不同形态磷肥对红壤玉米磷素吸收利用效率的影响[J]. 玉米科学, 2019, 27(5): 158. DOI: 10.13597/j.cnki.maize.science.20190523. |
[7] | 王瑞雪, 苏丽珍, 张连娅, 等. 玉米与大豆间作土壤生物学活性对磷有效性影响的定量解析[J]. 中国生态农业学报(中英文), 2022, 30(7): 1155. DOI: 10.12357/cjea.20210636. |
[8] | 苏丽珍, 赵红敏, 侯贤锋, 等. 玉米大豆间作对红壤磷库的活化作用及其磷肥响应[J]. 中国生态农业学报(中英文), 2023, 31(4): 558. DOI: 10.12357/cjea.20220345. |
[9] |
ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review[J]. Science of the Total Environment, 2018, 612: 522. DOI: 10.1016/j.scitotenv.2017.08.095. |
[10] |
BÜNEMANN E K, OBERSON A, LIEBISCH F, et al. Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability[J]. Soil Biology & Biochemistry, 2012, 51: 84. DOI: 10.1016/j.soilbio.2012.04.012. |
[11] |
NANNIPIERI P, GIAGNONI L, LANDI L, et al. Role of phosphatase enzymes in soil[M]. Berlin: Springer, 2011. |
[12] |
ROY S, BHATTACHARYYA P, GHOSH A K. Influence of toxic metals on activity of acid and alkaline phosphatase enzymes in metal-contaminated landfill soils[J]. Australian Journal of Soil Research, 2004, 42(3): 339. DOI: 10.1071/SR03044. |
[13] |
PARELHO C, RODRIGUES A S, BARRETO M C, et al. Assessing microbial activities in metal contaminated agricultural volcanic soils: an integrative approach[J]. Ecotoxicology and Environmental Safety, 2016, 129: 242. DOI: 10.1016/j.ecoenv.2016.03.019. |
[14] | 杨萍萍, 杨洪强, 毕润霞, 等. 外源植酸酶对土壤磷酸酶、微生物及平邑甜茶幼苗生长的影响[J]. 山东农业科学, 2013, 45(10): 81. DOI: 10.14083/j.issn.1001-4942.2013.10.009. |
[15] | 宋丹, 关连珠, 王吉磊, 等. 外源植酸酶对土壤有机磷组分含量的影响[J]. 中国土壤与肥料, 2008(2): 24. DOI: 10.11838/sfsc.20080206. |
[16] | 宋丹, 王吉磊. 外源植酸酶对土壤磷酸酶活性和有效磷含量的影响[J]. 中国土壤与肥料, 2009(5): 15. DOI: 10.11838/sfsc.20090504. |
[17] | 曲博, 李敏, 其美, 等. 外源植酸酶对野鸭湖湿地土壤有机磷转化的影响研究[J]. 生态环境学报, 2015, 24(2): 250. DOI: 10.16258/j.cnki.1674-5906.2015.02.011. |
[18] | 颜晓军, 苏达, 郑朝元, 等. 长期施肥对酸性土壤磷形态及有效性的影响[J]. 土壤, 2020, 52(6): 1139. DOI: 10.13758/j.cnki.tr.2020.06.006. |
[19] |
ZHOU L, SU L Z, ZHANG L Y, et al. Effect of different types of phosphate fertilizer on phosphorus absorption and desorption in acidic red soil of southwest China[J]. Sustainability, 2022, 14: 9973. DOI: 10.3390/su14169973. |
[20] |
TABATABAI M A, BREMNER J M. Use of P-nitrophenyl phosphate for assay of soil phosphatase activity[J]. Soil Biology and Biochemistry, 1969, 1(4): 301. DOI: 10.1016/0038-0717(69)90012-1. |
[21] |
ZHU J, QU B, LI M. Phosphorus mobilization in the Yeyahu Wetland: phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils[J]. International Biodeterioration & Biodegradation, 2017, 124: 304. DOI: 10.1016/j.ibiod.2017.05.010. |
[22] |
TIESSEN H, MOIR J O. Characterization of available P by sequential extraction[M]//CARTER M R, GREGORICH E G. Soil sampling and methods of analysis. 2nd ed. Boca Raton: CRC Press, 2007. |
[23] |
NWOKE O C, VANLAUWE B, DIELS J, et al. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils[J]. Agriculture Ecosystems & Environment, 2003, 94(2/3): 285. DOI: 10.1016/S0167-8809(03)00186-5. |
[24] |
YANG Z Y, ZHANG Y P, WANG Y Z, et al. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement[J]. Field Crops Research, 2022, 287: 108666. DOI: 10.1016/j.fcr.2022.108666. |
[25] |
ASERI G K, JAIN N, TARAFDAR J C. Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi arid soils of India[J]. American-Eurasian Journal of Agricultural and Environmental Sciences, 2009, 5(4): 564. |
[26] |
JORQUERA M, MARTÍNEZ O, MARUYAMA F, et al. Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria[J]. Microbes and Environments, 2008, 23(3): 182. DOI: 10.1264/jsme2.23.182. |
[27] |
BÜNEMANN E K. Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients[J]. Soil Biology & Biochemistry, 2008, 40: 2116. DOI: 10.1016/j.soilbio.2008.03.001. |