阳宗海鱼虾中砷、镉、铅、汞含量
分析阳宗海鱼虾中砷等重金属的含量。
于2022年9月采集阳宗海鱼虾样本15种,按照食品安全国家标准检测其无机砷、镉、铅和总汞含量,运用均值型指数法评估重金属综合污染程度,对比暂定每周可耐受摄入量(provisional tolerable weekly intake,PTWI)以评估食用安全性。
鱼虾样本中的无机砷含量为未检出(not detected,ND)~0.190 mg/kg,镉含量为ND~0.023 mg/kg,铅含量为ND~0.071 mg/kg,总汞含量为ND~0.120 mg/kg。虾中的无机砷和镉含量较高,且与鱼类相比存在显著差异;鱼类中的总汞含量显著高于虾。在鱼类中,尼罗罗非鱼的无机砷含量最高,高体鳑鲏对无机砷、镉和铅表现出较强的富集能力。虾的污染指数为0.107,属于微污染;鱼类的污染指数低于0.5,属于未污染或轻污染。根据鱼虾的重金属含量,计算得出人均每周重金属摄入量占PTWI标准值的0.020%~3.500%。
阳宗海鱼虾样本中的4种重金属含量均低于食品安全国家标准和无公害食品的有毒有害物质限量标准,总体污染程度为未污染或轻、微污染。初步推测阳宗海鱼虾的食用风险较低。
Content of Arsenic, Cadmium, Lead, and Mercury in Fish and Shrimp from Yangzonghai
To analyze the content of arsenic (As) and other heavy metals in fish and shrimp from Yangzonghai.
In September 2022, 15 species of fish and shrimp samples were collected from Yangzonghai. In accordance with national food safety standards, the inorganic As, cadmium (Cd), lead (Pb), and total mercury (Hg) contents in these samples were measured. The mean index method was used to evaluate the overall heavy metal pollution, and the provisional tolerable weekly intake (PTWI) was used to evaluate the safety of consumption.
The inorganic As content in fish and shrimp samples ranged from not detected (ND) to 0.190 mg/kg, Cd content ranged from ND to 0.023 mg/kg, Pb content ranged from ND to 0.071 mg/kg, and total Hg content ranged from ND to 0.120 mg/kg. The inorganic As and Cd contents in shrimp were higher than in fish, with significant differences observed; and the total Hg content in fish was significantly higher than in shrimp. Among different fishes, the highest inorganic As content was found in Oreochromis nilotica, and Rhodeus ocellatus showed relatively high bioaccumulation of inorganic As, Cd, and Pb. The pollution index of shrimp was 0.107, indicating mild pollution; while the pollution index of fish was less than 0.5, indicating no pollution or light pollution. Based on the heavy metal content in the fish and shrimp, the weekly per capita intake of heavy metals was calculated to range from 0.020% to 3.500% of the PTWI standard value.
The levels of the four heavy metals in the fish and shrimp samples from Yangzonghai are below the national food safety standards and the limits for toxic and harmful substances in non-polluted food. The overall pollution degree is classified as no pollution or lightly to mildly pollution. It is preliminarily concluded that the consumption risk of fish and shrimp from Yangzonghai is low.
-
Keywords:
- Yangzonghai /
- fish /
- shrimp /
- heavy metal pollution /
- food safety /
- arsenic
参考文献
[1] | 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998. |
[2] | 杨文龙. 云南高原湖泊的开发与保护[J]. 湖泊科学, 1994(2): 161. DOI: 10.18307/1994.0209. |
[3] | 张玉玺, 孙继朝, 向小平, 等. 云南阳宗海湖底沉积物重金属分布与来源[J]. 环境科学与技术, 2010, 33(12): 171. DOI: 10.3969/j.issn.1003-6504.2010.12.041. |
[4] | 季四平, 王世雄, 王宇剑, 等. 时间序列下的阳宗海降水与砷浓度变化关系研究[J]. 云南民族大学学报(自然科学版), 2020, 29(5): 435. DOI: 10.3969/j.issn.1672-8513.2020.05.005. |
[5] |
YACOUB A M, SATAR A M A. Heavy lmetals accumulation and macronutrients in the livers of some fish species of Bardawil Lagoon and their histological changes[J]. Egyptian Journal of Aquatic Biology and Fisheries, 2003, 7(4): 403. DOI: 10.21608/ejabf.2003.1800. |
[6] |
JIANG W J, LIU H W, SHENG Y Z, et al. Distribution, source apportionment, and health risk assessment of heavy metals in groundwater in a multi-mineral resource area, north China[J]. Water Quality, Exposure and Health, 2022, 14(4): 807. DOI: 10.1007/s12403-021-00455-z. |
[7] |
LIU J L, XU X R, DING Z H, et al. Heavy metals in wild marine fish from South China Sea: levels, tissue-and species-specific accumulation and potential risk to humans[J]. Ecotoxicology, 2015, 24(7): 1583. DOI: 10.1007/s10646-015-1451-7. |
[8] |
RONAGH M T, SAVARI A, PAPAHN F, et al. Bioaccumulation of heavy metals in Euryglossa orientalis from the Hendijan Seaport (Coastal of Persian Gulf), Iran[J]. Journal of Biological Sciences, 2009, 9(3): 272. DOI: 10.3923/jbs.2009.272.275. |
[9] |
ISLAM M A, DAS B, QURAISHI S B, et al. Heavy metal contamination and ecological risk assessment in water and sediments of the Halda river, Bangladesh: a natural fish breeding ground[J]. Marine Pollution Bulletin, 2020, 11(1): 160. DOI: 10.1016/j.marpolbul.2020.111649. |
[10] |
NAVPREET K, SINGH O B. Detrimental influence of industrial effluents, especially heavy metals, on limnological parameters of water and nutritional profile in addition to enzymatic activities of fish, Sperata seenghala (Sykes, 1839) from diverse Ramsar sites, India (Punjab)[J]. Environmental Monitoring and Assessment, 2023, 195(8): 1012. DOI: 10.1007/s10661-023-11600-3. |
[11] |
NEDA T, PARVIN S, GILAN F A. Monsoon effect on heavy metal and chemical composition in Parastromateus niger of the Oman Sea: health risk assessment of fish consumption[J]. Biological Trace Element Research, 2023, 201(8): 4093. DOI: 10.1007/s12011-022-03475-1. |
[12] |
ATEFEH A, MOHAMMAD G, RAHELEH K. Meta-analysis and health risk assessment of toxic heavy metals in muscles of commercial fishes in Caspian Sea[J]. Environmental Monitoring and Assessment, 2023, 195(4): 457. DOI: 10.1007/s10661-023-11076-1. |
[13] |
ARASH K J. A comparative study on the accumulation of toxic heavy metals in fish of the Oman Sea: effects of fish size, spatial distribution and trophic level[J]. Toxin Reviews, 2023, 42(1): 189. DOI: 10.1080/15569543.2022.2040033. |
[14] |
HOQUE M, TAMANNA F, HASAN M, et al. Probabilistic public health risks associated with pesticides and heavy metal exposure through consumption of common dried fish in coastal regions of Bangladesh[J]. Environmental Science and Pollution Research International, 2022, 29(2): 3. DOI: 10.1007/s11356-021-17127-9. |
[15] |
FRIDA N, MUSA C, TITUS M, et al. Bioaccumulation and distribution pattern of heavy metals in aquaculture systems found in Arusha and Morogoro regions of Tanzania[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(17): 5961. DOI: 10.1080/03067319.2020.1807523. |
[16] |
AWEWOMOM J, FRANCIS O, OSEI A. Health risk assessment, bioaccumulation factors and ecological indices of heavy metals in sediment, fish and water along Asuoyeboah River, Kumasi: a case study[J]. Chemistry Africa, 2022, 6(2): 1103. DOI: 10.1007/s42250-022-00524-z. |
[17] |
WANG X, REN L J, JIAO F C, et al. The ecological risk assessment and suggestions on heavy metals in river sediments of Jinan[J]. Water Science & Technology, 2017, 76(8): 2177. DOI: 10.2166/wst.2017.380. |
[18] |
TAUSEEF A, SUMAIRA G, AMJAD M K, et al. Bioaccumulation and health risk assessment of heavy metal (loid)s in different fish species of Hainan Island, China[J]. Thalassas, 2022, 38(2): 1395. DOI: 10.1007/s41208-022-00474-w. |
[19] | 蔡艳洁, 张恩楼, 刘恩峰, 等. 云南阳宗海沉积物重金属污染时空特征及潜在生态风险[J]. 湖泊科学, 2017, 29(5): 1121. DOI: 10.18307/2017.0510. |
[20] | 张慧娟, 刘云根, 侯磊, 等. 阳宗海湖滨湿地水体中重金属空间分布及环境风险评价[J]. 环境工程, 2016, 34(增刊1): 850. |
[21] | 潘义宏. 阳宗海大型水生植物对砷的吸收、富集特征及机理[D]. 昆明: 昆明理工大学, 2011. |
[22] | 胡文渊. 云南典型砷污染湖泊: 阳宗海浮游动物群落特征研究[D]. 昆明: 云南师范大学, 2021. |
[23] | 陶建霜, 陈光杰, 陈小林, 等. 阳宗海硅藻群落对水体污染和水文调控的长期响应模式[J]. 地理研究, 2016, 35(10): 1899. DOI: 10.11821/dlyj201610009. |
[24] | 杨常亮, 陈桂明, 李世玉, 等. 阳宗海沉积物中重金属生物有效性评估[J]. 环境工程学报, 2016, 10(3): 1191. DOI: 10.12030/j.cjee.20160330. |
[25] | GB 5009.11—2024. 食品安全国家标准 食品中总砷及无机砷的测定[S]. |
[26] | GB 5009.15—2023. 食品安全国家标准 食品中镉的测定[S]. |
[27] | GB 5009.12—2023. 食品安全国家标准 食品中铅的测定[S]. |
[28] | GB 5009.17—2021. 食品安全国家标准 食品中总汞及有机汞的测定[S]. |
[29] | 蔡深文, 倪朝辉, 李云峰, 等. 长江上游珍稀、特有鱼类国家级自然保护区鱼体肌肉重金属残留调查与分析[J]. 中国水产科学, 2011, 18(6): 1351. DOI: 10.3724/SP.J.1118.2011.01351. |
[30] |
ANON G. Report on revised standard for metals in food. Appendix I-V[R]. Canberra: Commonwealth Government Printers, 1979. |
[31] | 张强, 万青青, 刘志涛, 等. 云南城乡居民营养素摄入状况及膳食结构分析[J]. 中国公共卫生, 2016, 32(5): 661. DOI: 10.11847/zgggws2016-32-05-26. |
[32] | GB 2762—2022. 食品安全国家标准 食品中污染物限量[S]. |
[33] | NY 5073—2006. 无公害食品 水产品中有毒有害物质限量[S]. |
[34] | 尚晓迪, 何志强. 重金属在鱼体内积累作用的研究进展[J]. 河北渔业, 2009(5): 44. DOI: 10.3969/j.issn.1004-6755.2009.05.016. |
[35] | 黄宏, 郑欣芸, 李迎东, 等. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885. DOI: 10.16258/j.cnki.1674-5906.2022.09.019. |
[36] |
SILVESTRE F, DIERICK J, DUMONT V, et al. Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium[J]. Aquatic Toxicology, 2006, 76(1): 46. DOI: 10.1016/j.aquatox.2005.09.006. |
[37] | 陈万光, 郭志君, 邓平平, 等. 3种重金属离子对高体鳑鲏鱼苗的急性毒性试验[J]. 水产科学, 2010, 29(2): 3. DOI: 10.3969/j.issn.1003-1111.2010.02.012. |
[38] |
YI Y J, WANG Z Y, ZHANG K, et al. Sediment pollution and its effect on fish through food chain in the Yangtze River[J]. International Journal of Sediment Research, 2008, 23(4): 338. DOI: 10.1016/S1001-6279(09)60005-6. |
[39] | 于良君, 何友盛, 姚智. 镉胁迫下钙素对嗜鱼外瓶霉生长以及矿质元素和镉含量的影响[J]. 云南农业大学学报(自然科学), 2023, 38(6): 1079. DOI: 10.12101/j.issn.1004-390X(n).202209001. |
[40] | 张慧娟, 刘云根, 梁启斌, 等. 阳宗海沉积物重金属污染评价及来源解析[J]. 环境科学与技术, 2016, 39(增刊1): 353. DOI: 10.3969/j.issn.1003-6504.2016.S1.070. |
[41] | 肖明松, 王松, 鲍方印, 等. 淮河蚌埠段采样点鱼虾贝类重金属的富集[J]. 环境科学研究, 2011, 24(8): 942. DOI: 10.13198/j.res.2011.08.110.xiaoms.002. |
[42] |
HU S G, SU Z J, JIANG J, et al. Lead, cadmium pollution of seafood and human health risk assessment in the coastline of the southern China[J]. Stochastic Environmental Research & Risk Assessment, 2016, 30(5): 1379. DOI: 10.1007/s00477-015-1139-9. |
[43] | 吴迪, 王梦圆, 史永富, 等. 镉在甲壳类水生生物中的蓄积现状及赋存形态研究进展[J]. 核农学报, 2023, 37(1): 128. DOI: 10.11869/j.issn.1000-8551.2023.01.0128. |
[44] |
SANTORO A, BLO G, MASTROLITTI S, et al. Bioaccumulation of heavy metals by aquatic macroinvertebrates along the Basento River in the south of Italy[J]. Water Air & Soil Pollution, 2009, 201(1/4): 19. DOI: 10.1007/s11270-008-9923-5. |
[45] | 张玉玺, 孙继朝, 向小平, 等. 阳宗海表层沉积物中的重金属生态风险评估[J]. 水资源保护, 2012, 28(5): 19. DOI: 10.3969/j.issn.1004-6933.2012.05.004. |
[46] | 毕建培, 刘晨, 黎绍佐. 阳宗海砷污染水质变化过程分析[J]. 水资源保护, 2014, 30(1): 84. DOI: 10.3969/j.issn.1004-6933.2014.01.017. |
[47] | 石帮辉, 王建全, 李虹, 等. 云南省阳宗海砷污染监测及对阳宗镇入湖河水、水源、食品的影响[J]. 中华地方病学杂志, 2014, 33(2): 182. DOI: 10.3760/cma.j.issn.2095-4255.2014.02.018. |
[48] |
ORATA F, BIRGEN F. Fish tissue bio-concentration and interspecies uptake of heavy metals from waste water Lagoons[J]. Journal of Pollution Effects and Control, 2016, 4(2): 1. DOI: 10.4172/2375-4397.1000157. |
[49] | 昆明阳宗海风景名胜区管理委员会. 全湖平均水质达Ⅱ类!阳宗海水质达到了近年来最好水平[EB/OL]. (2023-02-17)[2024-02-21]. https://yzh.km.gov.cn/c/2023-02-17/6524862.shtml. |
[50] | 陈瑞娟, 李明, 周思辰, 等. 2019—2020年阳宗海水质现状及特征[J]. 环境科学导刊, 2022, 41(1): 5. DOI: 10.13623/j.cnki.hkdk.2022.01.012. |
[51] | 楚禄建, 杨晓菁, 刘金铃, 等. 神农架大九湖两种鲤科鱼重金属污染状况分析[J]. 水生态学杂志, 2021, 42(4): 76. DOI: 10.15928/j.1674-3075.202001140014. |
[52] | 徐承香, 杨瑞泉, 巴家文, 等. 贵州省威宁草海主要野生鱼类重金属含量及健康风险评价[J]. 南方农业学报, 2020, 51(12): 3040. DOI: 10.3969/j.issn.2095-1191.2020.12.021. |
[53] | 巴家文, 邢玉花, 安远锋, 等. “锰三角”区域松桃河大口鲇和斑鳜重金属富集及风险评价研究[J]. 淡水渔业, 2019, 49(4): 108. DOI: 10.13721/j.cnki.dsyy.2019.04.016. |
[54] | 王文君, 易雨君, 张尚弘, 等. 长江中下游鱼类重金属污染及健康风险评价[J]. 水利水电技术, 2019, 50(2): 8. DOI: 10.13928/j.cnki.wrahe.2019.02.002. |
[55] | 张敏, 张涛, 郜志云, 等. 保安湖鱼体重金属和有机氯农药污染特征及健康风险评价[J]. 生态毒理学报, 2018, 13(6): 288. DOI: 10.7524/AJE.1673-5897.20180616001. |
[56] | 匡荟芬, 胡春华, 孙丽丽, 等. 鄱阳湖鱼类重金属积累特征及其健康风险评价[J]. 南昌大学学报(理科版), 2018, 42(6): 578. DOI: 10.13764/j.cnki.ncdl.2018.06.014. |
[57] | 常显志, 吴志强, 黄亮亮, 等. 漓江5种常见食用经济鱼类重金属含量分析[J]. 环境科学与技术, 2017, 40(9): 203. DOI: 10.3969/j.issn.1003-6504.2017.09.031. |
[58] | 王俊能, 马鹏程, 张丽娟, 等. 广西刁江野生鱼类重金属积累特征及其健康风险评价[J]. 环境科学, 2017, 38(6): 2600. DOI: 10.13227/j.hjkx.201611188. |
[59] | 彭耀. 九寨沟亚高山环境汞的空间格局[D]. 成都: 四川师范大学, 2015. |
[60] |
GARNERO P L, MONFERRAN M V, GONZALEZ G A, et al. Assessment of exposure to metals, As and Se in water and sediment of a freshwater reservoir and their bioaccumulation in fish species of different feeding and habitat preferences[J]. Ecotoxicology and Environmental Safety, 2018, 163: 492. DOI: 10.1016/j.ecoenv.2018.07.023. |
计量
- 文章访问数: 64
- PDF下载量: 0