解淀粉芽孢杆菌OMR1-7菌株对拟石莲花属多肉植物黑腐病的生防效果
明确解淀粉芽孢杆菌(Bacillus amyloliquefaciens)对拟石莲花属(Echeveria)多肉植物黑腐病病原菌——尖孢镰刀菌(Fusarium oxysporum)的生防效果。
从小粒野生稻(Oryza minuta)根部分离和鉴定了1株内生解淀粉芽孢杆菌OMR1-7菌株,测定其对拟石莲花属多肉植物品种血色罗密欧黑腐病菌F. oxysporum KMEARM-2菌株和静夜黑腐病菌F. oxysporum KMJY6菌株的拮抗效果、产铁载体和生物膜能力、定殖能力以及温室防效。
OMR1-7菌株对2种黑腐病菌菌丝抑制率分别为57.15%和74.29%,菌体抑制率分别为84.82%和86.15%。该菌株可造成2种黑腐病菌的侵染结构畸形,产孢量减少。该菌株产铁载体相对量为80.98%,具有较强的铁元素竞争能力,且能够产生生物膜,在血色罗密欧和静夜植株的根、茎、叶内稳定定殖,预防黑腐病菌的侵入和蔓延。OMR1-7菌株对血色罗密欧和静夜黑腐病具有良好的生防效果,温室防效分别为80.08%和78.89%。
研究结果将为拟石莲花属多肉植物黑腐病的生物防治提供微生物菌种资源,为相关生防菌剂及制剂研发提供参考。
Biocontrol Efficiency of Bacillus amyloliquefaciens OMR1-7 against Echeveria Black Rot Disease
To clarify the biocontrol effects of Bacillus amyloliquefaciens OMR1-7 against Fusarium oxysporum causing black rot disease in Echeveria succulent plants.
The endophytic bacterial strain OMR1-7 isolated from the root tissues of Oryza minuta was identified as B. amyloliquefaciens in this study. The antagonistic effects of B. amyloliquefaciens OMR1-7 against F. oxysporum KMEARM-2 on E. agavoides cv. ‘Romeo’ and F. oxysporum KMJY6 on E. derenbergii cv. ‘Purpus’, the pathogens causing black rot disease in succulent plants of the genus Echeveria, was evaluated. Furthermore, its ability to produce iron carriers and biofilms, colonization capacity, and greenhouse efficacy were also determined.
The hyphal growth suppressive rates and colony inhibition rates of this antagonistic bacterium against these two pathogens were determined to be 57.15%-74.29% and 84.82%-86.15%, respectively. Due to the antagonistic effect of B. amyloliquefaciens OMR1-7, these two pathogens produced abnormal hyphae and decreased sporulation. B. amyloliquefaciens OMR1-7 produced siderophores with a relative yield of 80.98%, indicating the strong competition for iron. This strain formed biofilms to colonize in the root, stem and leaf tissues of plants, which could prevent the invasion and spread of F. oxysporum. Furthermore, the biocontrol efficiency of B. amyloliquefaciens OMR1-7 against pathogens of E. agavoides cv. ‘Romeo’ and E. derenbergii cv. ‘Purpus’ black rot disease in the greenhouse was determined to be 80.08% and 78.89%, respectively.
The results will provide the biocontrol microbial resource, which can develop the microbial fungicide, for preventing black rot disease in Echeveria succulent plants.
-
青稞(Hordeum vulgare Linn. var. nudum Hook.f.)又称裸大麦,是禾本科大麦属禾谷类作物[1]。有些青稞品种籽粒呈紫黑色,含有丰富的花青素,还含有丰富的膳食纤维和β-葡聚糖[2-4],使青稞不仅在食用方面有着良好的营养价值,在医疗保健方面同样具有一定的作用。因此,青稞籽粒常用于加工成各种保健食品。
由于青藏高原的环境条件比较恶劣,很多作物都无法适应和生长,但青稞却表现出突出的抗逆能力,成为当地植物适应性进化的典型代表[5]。在西藏和云南省迪庆州等青稞生产区,其生长期虽然雨水较多,但播种期大多处于旱季,土壤缺水容易造成出苗率低和出苗不整齐等情况,造成青稞种子的浪费。为了提高青稞种子的出苗率和整齐度,播种前进行种子引发是抵御播种期土壤干旱的重要措施。种子引发又称渗透调节,是将种子浸泡于较高渗透势溶液中,使种子在吸胀过程中减缓吸水速率,促使种子在萌发前充分完成各种修复与活化,有利于播种后快速整齐出苗[6-9]。种子引发除了能提高种子萌发速率和田间整齐度外,还能提高作物的抗盐能力[10]、抗逆性及抗病性[11]。本研究选用6个青稞品系,采用不同质量浓度的食盐溶液和不同引发处理时间,对青稞种子进行引发处理和发芽试验,测定苗长、发芽势、发芽率、发芽指数和活力指数等发芽特性,筛选出适于青稞种子引发的最佳食盐质量浓度和引发时间,提高青稞种子发芽速率和整齐度,保证出苗齐全,为高产栽培奠定基础。
1. 材料与方法
1.1 供试材料
选用云南农业大学新近选育的滇青1号、2015-129、2015-130、2015-132、2015-137和2015-138共6个青稞品系进行研究。
1.2 引发试验
采用青稞品种、食盐溶液质量浓度和引发时间3因素完全随机试验设计。试验时,每个处理取种子100粒,置于25 mL的具塞试管中,分别加入0 (清水,CK)、0.025、0.050、0.075和0.100 g/mL食盐溶液10 mL,加塞密封。各质量浓度处理在15 ℃下分别浸泡1、2、3、4、5和6 h进行引发,重复3次。引发结束后,用清水将种子表面的食盐溶液冲洗干净备用。
1.3 发芽试验
将经过引发的种子置于垫有2层经高温消毒吸水纸的发芽盒中进行标准发芽试验,测定种子发芽特性[12]。从发芽试验的第2天开始,每天统计已发芽的全部种子数,连续统计7 d。以胚根与种子等长、胚芽长到种子长度一半为标准判断种子是否发芽,到第7天发芽试验结束时测定平均苗长[13]。然后根据统计结果计算发芽势、发芽率、发芽指数和活力指数,计算公式[14-15]如下:
发芽势(GP)=(发芽试验第4天正常发芽种子数/供试种子总数)×100%;
发芽率(GR)= (发芽试验第7天正常发芽种子数/供试种子总数)×100%;
发芽指数(GI)=∑(Gt/Dt);
活力指数(GVI)=GI×S;
式中,Gt为每天发芽种子数;Dt为对应发芽时间;S为幼苗发芽试验结束时幼苗的平均长度。
1.4 数据统计与分析
采用Excel 2016和SPSS 17.0分别对青稞的苗长、发芽势、发芽率、发芽指数和活力指数进行多元方差分析和多重比较(Duncan’s法)分析。
2. 结果与分析
2.1 青稞种子发芽特性的方差分析
由表1可知:品系间、质量浓度间、引发时间之间,以及品系和引发时间互作对苗长、发芽势、发芽率、发芽指数和活力指数均有极显著的影响,说明本研究设计合理,设置的质量浓度梯度和引发时间有效,可进行进一步统计分析。
表 1 青稞种子发芽特性方差F值分析Table 1. The F value of analysis of variance of the germination characteristics of hulless barley项目 item 苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index品系间 among the lines 849.55** 83.57** 83.12** 219.37** 453.40** 质量浓度间 among the mass concentrations 1 155.96** 87.29** 66.71** 81.63** 750.58** 引发时间间 among the priming time 41.26** 24.78** 24.69** 26.82** 39.52** 品系×质量浓度 lines × mass concentrations 0.06 0.23 1.27 0.28 1.47 品系×引发时间 lines × priming time 12.73** 9.76** 10.62** 10.39** 6.48** 质量浓度×引发时间
mass concentrations × priming time0.01 1.47 1.22 0.88 0.67 品系×质量浓度×引发时间
lines × mass concentrations × priming time0.02 0.21 0.41 0.20 0.15 注:“*”和“**”分别表示0.05和0.01显著水平。
Note: “*” and “**” show the significant difference at 0.05 and 0.01 levels, respectively.2.2 食盐溶液对不同青稞品系种子发芽特性的影响
由表2可知:不同质量浓度的食盐溶液对不同品系青稞种子的引发效果不尽相同。滇青1号和2015-132的活力指数极显著高于其他品系,且2015-132的发芽势、发芽率和发芽指数均极显著高于其他品系(P<0.01);2015-137的苗长极显著高于其他品系(P<0.01);2015-129的苗长、发芽势、发芽率和活力指数均处于最低水平,明显低于其他青稞品系,说明该品系进行引发处理后发芽情况较差。
表 2 食盐溶液对不同青稞品系种子发芽特性的影响Table 2. Effects of salt solution on the seed germination characteristics of different hulless barley varieties (lines)品系
lines苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index滇青1号 Dianqing No.1 13.83 bB 86.38 cC 90.44 bB 66.55 bB 927.04 aA 2015-129 9.75 eE 79.69 fE 83.73 eE 58.12 dD 571.99 eE 2015-130 9.64 eE 84.22 dD 88.24 cC 63.70 cC 618.79 dD 2015-132 11.87 dD 93.42 aA 96.29 aA 74.64 aA 892.42 bB 2015-137 14.37 aA 82.73 eD 86.31 dD 57.74 dD 834.55 cC 2015-138 12.57 cC 88.69 bB 91.67 bB 67.06 bB 847.00 cC 注:同一列不同大小写字母分别表示在0.01和0.05水平上差异显著;下同。
Note: The different capital and lowercase letters in the same column indicate a significant difference on 0.01 and 0.05 levels, respectively; the same as below.2.3 食盐溶液质量浓度对青稞种子发芽特性的影响
由表3可知:采用0.025 g/mL食盐溶液引发的青稞种子,其苗长、发芽势、发芽率、发芽指数和活力指数都极显著高于其他处理(P<0.01),而0.050、0.075和0.100 g/mL食盐溶液处理后的青稞种子各项指标随着食盐溶液质量浓度的增大明显下降。0.050 g/mL食盐溶液引发的种子,其发芽率与对照无显著差异,但发芽势和发芽指数显著高于对照,苗长和活力指数均极显著低于对照。0.075和0.100 g/mL食盐溶液引发的青稞种子,其所有发芽特性均极显著低于对照(P<0.01)。可见,0.025 g/mL的食盐溶液对青稞种子的引发效果最好。
表 3 不同食盐溶液质量浓度(ρ)对青稞种子发芽特性的影响Table 3. Effect of salt solution of different mass concentrations (ρ) on the seed germination of hulless barleyρ/(g·mL−1) 苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index0 13.48 bB 87.15 cB 90.20 bB 65.36 cB 881.81 bB 0.025 13.98 aA 90.81 aA 94.81 aA 68.87 aA 963.43 aA 0.050 12.78 cC 88.74 bB 89.91 bB 66.65 bB 852.72 cC 0.075 10.98 dD 82.78 dC 86.65 cC 62.36 dC 685.24 dD 0.100 8.78 eE 79.80 eD 85.67 cC 59.94 eD 526.63 eE 2.4 食盐溶液引发时间对青稞种子发芽特性的影响
由表4可知:用食盐溶液引发青稞种子3 h时,活力指数极显著高于其他处理(P<0.01);引发3 h的苗长显著高于其他处理(P<0.05);引发3 h的发芽指数虽然与引发2 h的效果差异不显著,但两者的发芽指数均显著高于其他处理;引发3 h的发芽势和发芽率虽然与引发1和2 h的效果没有显著差异,但均显著高于其他处理(P<0.05)。由此可知,用食盐溶液引发3 h可明显提高青稞种子的发芽特性。
表 4 食盐溶液引发时间对青稞种子发芽特性的影响Table 4. Effect of salt solution of priming time on the seed germination of hulless barley引发时间/h
priming time苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index1 11.87 cB 87.89 abA 91.62 aA 63.99 bB 761.35 cC 2 11.89 cB 87.36 abA 90.58 abAB 67.23 aA 802.03 bB 3 12.60 aA 88.36 aA 91.80 aA 66.66 aA 850.62 aA 4 11.95 cB 86.38 bA 89.49 bB 61.00 cC 736.32 dC 5 12.38 bA 82.60 cB 85.91 dC 64.47 bB 800.70 bB 6 11.34 dC 82.56 cB 87.29 cC 64.46 bB 740.79 dC 3. 讨论
种子引发可有效改善种子活力,提高种子成苗率和幼苗健壮度[16]。尤其在播种期遇到土壤干旱时,通过种子引发可有效提高种子的发芽率和发芽速度,保证出苗齐全。不同引发方法的效果存在明显差异[17]。种子引发后,由于吸收了一定量的水分,种子耐藏能力下降,寿命变短,还会出现种子发霉和变质等问题[18-19],大规模推广时会带来一定的难度[20-21]。因此,通过系统研究分析现有引发技术中存在的缺陷,找出有效的解决办法和技术措施,已成为种子引发技术研究的当务之急[22]。
本研究表明:利用食盐溶液对青稞种子进行引发,对苗长、发芽势、发芽率、发芽指数和活力指数等发芽特性有明显影响。许多研究也证明了种子引发在一定程度上可提高各类作物的发芽率及成活率,进而提高作物产量[13, 23-25]。用食盐溶液对青稞种子引发处理后,不同品系对溶液质量浓度和引发时间的响应不尽相同,说明品种间存在一定的差异。研究结果还显示:用于引发的食盐溶液质量浓度不宜过高,引发时间也不宜过长。因此,选用食盐溶液进行引发时,选取最佳的引发时间和引发质量浓度就尤为重要。本研究通过综合比较分析,发现0.025 g/mL的食盐溶液对青稞种子进行3 h的引发效果最好。因此,采用食盐溶液引发青稞种子时不必过早,处理种子也不宜过多,只需要在播种前3 h进行处理,经过引发处理的种子能够当天播种完毕即可,不宜存放。
本研究采用食盐溶液对青稞种子进行引发,是因为食盐价格低廉,溶液配置简便,方法简单易行,便于操作,适合广大种植户采用。此外,西藏和云南迪庆州等地区虽然在青稞生长季有较多的雨水,但在青稞的播种期,这些地区大多处于旱季,因此本研究成果特别适合在青稞播种期土壤较为干旱的地区应用和推广,以提高青稞出苗的速度和整齐度,降低播种成本,提高播种效果,形成健壮幼苗,使青稞有效度过干旱的播种季,对青稞播种实践具有一定的指导意义。
-
图 1 解淀粉芽孢杆菌OMR1-7菌株的形态特征和分子序列系统发育树
注:a) LB培养基上的菌落形态;b) 革兰氏染色结果;c) 16S rDNA基因系统发育树;d) gyrA基因系统发育树。
Figure 1. Morphological characteristic and molecular sequence phylogenetic tree of Bacillus amyloliquefaciens OMR1-7 strain
Note: a) colony of B. amyloliquefaciens OMR1-7 on LB medium; b) cells of B. amyloliquefaciens OMR1-7 based on Gram staining; c) phylogenetic tree from 16S rDNA sequences; d) phylogenetic tree from gyrA genes.
图 2 解淀粉芽孢杆菌OMR1-7菌株对拟石莲属多肉植物黑腐病菌的抑制效果
注:a) OMR1-7菌株对黑腐病菌KMEARM-2和KMJY6菌株的菌丝生长抑制效果以及菌体生长抑制效果;b) OMR1-7菌株造成黑腐病菌KMEARM-2和KMJY6菌株菌丝膨大畸形;c)~e) “*”表示差异显著(P<0.05),“**”表示差异极显著(P<0.01),下同。
Figure 2. Antagonistic effects of B. amyloliquefaciens OMR1-7 against Fusarium oxysporum causing black rot on Echeveria succulent plants
Note: a) hyphal and colony growth of Fusarium oxysporum KMEARM-2 and KMJY6 were inhibited by B. amyloliquefaciens OMR1-7; b) F. oxysporum KMEARM-2 and KMJY6 produced abnormal hyphae due to the antagonistic effect of B. amyloliquefaciens OMR1-7; c)-e) “*” indicates a significant differences (P<0.05), “**” indicates an extremely significant differences (P<0.01), the same as below.
图 4 解淀粉芽孢杆菌OMR1-7菌株在Msgg液态培养基中形成生物膜
注:a) LB培养基接种在MSgg液态培养基72 h后的情况;b) OMR1-7菌株接种在MSgg液态培养基72 h后形成生物膜的情况。
Figure 4. Biofilms produced by B. amyloliquefaciens OMR1-7 in Msgg liquid medium
Note: a) LB medium was inoculated in Msgg liquid medium after 72 h; b) B. amyloliquefaciens OMR1-7 produced biofilms in Msgg liquid medium after 72 h.
-
[1] 胡莹冰, 沈守云. 多肉植物的景观应用及发展趋势[J]. 广东农业科学, 2013, 40(12): 46. DOI: 10.16768/j.issn.1004-874x.2013.12.057. [2] 刘磊. 多肉还能再火十年吗?[N/OL]. 中国花卉报, 2023-04-20(2)[2023-07-18]. DOI: 10.38297/n.cnki.nzghh. 2023.000168. [3] GULLINO M L, DAUGHTREY M L, GARIBALDI A, et al. Fusarium wilts of ornamental crops and their management[J]. Crop Protection, 2015, 73: 50. DOI: 10.1016/ j.cropro.2015.01.003.
[4] KAMALI-SARVESTANI S, MOSTOWFIZADEH-GHALAMFARSA R, SALMANINEZHAD F, et al. Fusarium and Neocosmospora species associated with rot of Cactaceae and other succulent plants[J]. Journal of Fungi, 2022, 8(4): 364. DOI: 10.3390/jof8040364.
[5] XUE Z F, JI M L, TIAN Q L, et al. First report of Fusarium oxysporum causing stem and leaf rot on Ec heveria agavoides cv. Romeo in southwestern China[J]. Journal of Plant Pathology, 2023, 105(16): 319. DOI: 10. 1007/s42161-022-01220-0.
[6] 薛治峰, 张树竹, 孔德婷, 等. 多肉植物‘静夜’黑腐病的病原菌鉴定[J]. 植物病理学报, 2023, 53(5): 981. DOI: 10. 13926/j.cnki.apps.000842. [7] 刘浩, 杨爽, 田佩玉, 等. 多肉植物彩虹黑腐病病原菌的分离鉴定[C]//彭友良, 王文明, 陈学伟. 中国植物病理学会2019年学术年会论文集. 北京: 中国农业科学技术出版社, 2019. [8] ORTU G, BERTETTI D, GULLINO M L, et al. Fusarium oxysporum f. sp. echeveriae, a novel forma specialis causing crown and stem rot of Echeveria agavoides[J]. Phytopathologia Mediterranea, 2015, 54(1): 64. DOI: 10.14601/Phytopathol_Mediterr-13533.
[9] YAO J A, HUANG P, CHEN H X, et al. Fusarium oxysporum is the pathogen responsible for stem rot of the succulent plant Echeveria ‘Perle von Nürnberg’ and observation of the infection process[J]. European Journal of Plant Pathology, 2021, 159(3): 555. DOI: 10.1007/s10 658-020-02186-4.
[10] COLLINGE D B, JENSEN D F, RABIEY M, et al. Biological control of plant diseases: what has been achieved and what is the direction?[J]. Plant Pathology, 2022, 71(5): 1024. DOI: 10.1111/ppa.13555.
[11] DUAN Y H, QU W W, CHANG S X, et al. Identification of pathogenicity groups and pathogenic molecular characterization of Fusarium oxysporum f. sp. sesami in China[J]. Phytopathology, 2020, 110(5): 1093. DOI: 10.1094/PHYTO-09-19-0366-R.
[12] 严婉荣, 赵廷昌, 肖彤斌, 等. 生防细菌在植物病害防治中的应用[J]. 基因组学与应用生物学, 2013, 32(4): 533. DOI: 10.3969/gab.032.000533. [13] 李港, 刘博文, 王子晗, 等. 植物内生菌研究进展[J]. 现代农业科技, 2022(17): 110. DOI: 10.3969/j.issn.1007-5739.2022.17.028. [14] ZHAO D, ZHAO H, ZHAO D, et al. Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease[J]. Biological Control, 2018, 119: 12. DOI: 10.3389/ fmicb.2015.00198.
[15] MULLER S, STRACK S N, RYAN S E, et al. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures[J]. Applied and Environmental Microbiology, 2015, 81(1): 203. DOI: 10.1128/AEM.02448-14.
[16] BIANCIOTTO V, ANDREOTTI S, BALESTRINI R, et al. Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots[J]. Molecular Plant-Microbe Interactions, 2001, 14(2): 255. DOI: 10.1094/MPMI.2001.14.2.255.
[17] 赵春云, 杨颂, 欧阳立明, 等. 高渗提高凝结芽孢杆菌P4-102B菌株的电击转化效率[J]. 微生物学通报, 2016, 43(6): 1388. DOI: 10.13344/j.microbiol.china.160097. [18] MATSUNO Y, ANO T, SHODA M. High-efficiency transformation of Bacillus subtilis NB22, an antifungal antibiotic iturin producer, by electroporations[J]. Journal of Fermentation and Bioengineering, 1992, 73(4): 261. DOI: 10.1016/0922-338X(92)90179-X.
[19] BOGUTA A M, BRINGEL F, MARTINUSSEN J, et al. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks[J]. Microbial Cell Factories, 2014, 13(1): 97. DOI: 10.1186/s12934-014-0097-0.
[20] 夏善勇, 牛志敏, 李庆全, 等. 马铃薯镰刀菌枯萎病研究进展及防控手段[J]. 黑龙江农业科学, 2022(2): 89. DOI: 10.11942/j.issn1002-2767.2022.02.0089. [21] LUO L, ZHAO C Z, WANG E T, et al. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms[J]. Microbiological Research, 2022, 259(1): 127016. DOI: 10.1016/j.micres.2022.127016.
[22] NGALIMAT M S, YAHAYA R S R, BAHARUDIN M M A A, et al. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens[J]. Microorganisms, 2021, 9(3): 614. DOI: 10.3390/ microorganisms9030614.
[23] WANG S Y, HERRERA-BALANDRANO D D, WANG Y X, et al. Biocontrol ability of the Bacillus amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of Fungal postharvest diseases: a review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(22): 6591. DOI: 10.1021/acs.jafc.2c01745.
[24] CHOWDHURY S P, HARTMANN A, GAO X W, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review[J]. Frontiers in Microbiology, 2015, 6: 780. DOI: 10.3389/fmicb.2015.00780.
[25] FIRA D, DIMKIĆ I, BERIĆ T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44. DOI: 10.1016/j.jbiotec.2018.07.044.
[26] GU S H, WEI Z, SHAO Z Y, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8): 1002. DOI: 10.1038/s41564-020-0719-8.
[27] TINA R, ANURADHA B, SONAWANE P J, et al. Bio-effective disease control and plant growth promotion in lentil by two pesticide degrading strains of Bacillus sp.[J]. Biological Control, 2018, 127(1): 55. DOI: 10.1016/j.bi- ocontrol.2018.08.018.
[28] MATES A D P K, PONTES N D C, HALFELD-VIEIRA B D A. Bacillus velezensis GF267 as a multi-site antagonist for the control of tomato bacterial spot[J]. Biological Control, 2019, 137: 104013. DOI: 10.1016/j.bi- ocontrol.2019.104013.
[29] BRZEZINSKA M S, KALWASIŃSKA A, WITCZAK J, et al. Exploring the properties of chitinolytic Bacillus isolates for the pathogens biological control[J]. Microbial Pathogenesis, 2020, 148(19): 104462. DOI: 10.1016/j.micpath.2020.104462.
[30] WANG H W, CAI X Y, XU M, et al. Enhanced biocontrol of cucumber Fusarium wilt by combined application of new antagonistic bacteria Bacillus amyloliquefaciens B2 and phenolic acid-degrading fungus Pleurotus ostr eatus P5[J]. Frontiers in Microbiology, 2021, 12: 700142. DOI: 10.3389/fmicb.2021.700142.
[31] 王世伟, 王卿惠, 翟丽萍, 等. 多组学分析在解淀粉芽孢杆菌相关功能机制研究中的应用进展[J]. 湖南农业大学学报(自然科学版), 2020, 46(4): 9. DOI: 10.13331/j.cnki.jhau.2020.04.005. [32] 薛松, 汪军, 王国芬, 等. 解淀粉芽胞杆菌的GFP标记及定殖能力[J]. 热带作物学报, 2017, 38(3): 551. DOI: 10.3969/j.issn.1000-2561.2017.03.026. [33] 张荣胜, 于俊杰, 齐中强, 等. 解淀粉芽胞杆菌Jt84防治水稻稻曲病田间应用技术研究[J]. 中国生物防治学报, 2021, 37(3): 524. DOI: 10.16409/j.cnki.2095-039x.2021.02.017. [34] 杨洪凤, 余向阳, 薛雅蓉, 等. 内生解淀粉芽孢杆菌CC09在小麦根部定殖的电镜观察及防病效果[J]. 中国生物防治学报, 2014, 30(6): 839. DOI: 10.16409/j.cnki.2095-039x.2014.06.007. [35] LIU Y, GAO J, BAI Z H, et al. Unraveling mechanisms and impact of microbial recruitment on oilseed rape ( Br assica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria[J]. Microorganisms, 2021, 9(1): 161. DOI: 10.3390/MICROORGANISMS9010161.
[36] HUANG Z Y, WU L M, LI X, et al. Zn (Ⅱ) suppresses biofilm formation in Bacillus amyloliquefaciens by inactivation of the Mn (Ⅱ) uptake[J]. Environmental Microbiology, 2020, 22(4): 1547. DOI: 10.1111/1462-2920.14 859.
[37] YARYURA P M, LEÓN M, CORREA O S, et al. Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339[J]. Current Microbiology, 2008, 56(6): 625. DOI: 10.1007/s00284-008-9137-5.
[38] YUAN J, RAZA W, SHEN Q R, et al. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense[J]. Applied and Environmental Microbiology, 2012, 78(16): 5942. DOI: 10.1128/AEM.01357-12.
[39] 黄伟, 张丽娟, 王宁, 等. 芽孢杆菌属挥发性物质及其在植物病害防治中的应用研究进展[J]. 中国植保导刊, 2021, 41(9): 30. DOI: 10.3969/j.issn.1672-6820.2021.09.004. [40] MEDEOT D B, BERTORELO-CUENCA M, LIAUDAT J P, et al. Improvement of biomass and cyclic lipopeptides production in Bacillus amyloliquefaciens MEP218 by modifying carbon and nitrogen sources and ratios of the culture media[J]. Biological Control, 2017, 115: 119. DOI: 10.1016/j.biocontrol.2017.10.002.
[41] 王静, 宁燕夏, 李黄维, 等. 解淀粉芽孢杆菌B6在番茄根部定殖及对番茄枯萎病盆栽防效初步研究[J]. 中国植保导刊, 2018, 38(3): 19. DOI: 10.3969/j.issn.1672-6820. 2018.03.003. [42] 张妙宜, 陈志杰, 陈宇丰, 等. 1株拮抗细菌的分离鉴定及其对香蕉枯萎病等病原菌的抑制活性测定[J]. 热带作物学报, 2017, 38(11): 2151. DOI: 10.3969/j.issn.1000- 2561.2017.11.025. [43] 雷白时, 王笑颖, 姜军坡, 等. 草莓根腐病生防芽孢杆菌的筛选鉴定与盆栽防效试验[J]. 河北农业大学学报, 2016, 39(3): 19. DOI: 10.13320/j.cnki.jauh.2016.0053. [44] 杜鸿燕, 何涛, 刘凤弼, 等. 解淀粉芽孢杆菌对葡萄白粉病的防控效果研究[J]. 云南农业大学学报(自然科学), 2021, 36(6): 944. DOI: 10.12101/j.issn.1004-390X(n).20 2102019. [45] COYTE K Z, SCHLUTER J, FOSTER K R. The ecology of the microbiome: networks, competition, and stability[J]. Science, 2015, 350(6261): 663. DOI: 10.1126/science.aad2602.
[46] RILLING J I, ACUÑA J J, NANNIPIERI P, et al. Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria[J]. Soil Biology and Biochemistry, 2019, 130: 205. DOI: 10.1016/j.soilbio.2018.12.012.
-
期刊类型引用(3)
1. 苏炀,胡华兵,王荣华,王茂芊. 不同浓度酒石酸对甜菜种子萌发的影响. 中国农学通报. 2023(30): 21-27 . 百度学术
2. 苏斌,方睿霞,高婷,熊浪,杨青松. 不同波长光照处理对青稞种子萌发的影响. 种子科技. 2022(01): 8-10 . 百度学术
3. 樊奇,任延靖,郭仙玉,孙海珊,赵孟良. 不同处理方法对菊芋种子萌发的影响. 种子. 2021(09): 86-91 . 百度学术
其他类型引用(0)