甘蓝型油菜BnWRKY15s基因克隆及锑胁迫下的表达分析
克隆甘蓝型油菜BnWRKY15s基因,探讨其在锑 (antimony,Sb)胁迫下的功能。
以甘蓝型油菜品种湘杂油512为材料,通过RT-PCR技术克隆BnWRKY15s基因,利用生物信息学工具和qRT-PCR分析其蛋白结构、理化性质、表达模式及在Sb胁迫下的表达。
成功克隆了BnA04.WRKY15和BnC04.WRKY15基因,其cDNA序列分别为960和996 bp,分别编码319和331个氨基酸。BnA04.WRKY15的氨基酸分子质量为34.63 ku,等电点为9.75;BnC04.WRKY15的氨基酸分子质量为35.81 ku,等电点为9.75。两者均为不稳定型亲水蛋白,主要二级结构为无规则卷曲,其次为α-螺旋。序列一致性分析表明:BnA04.WRKY15与白菜蛋白的相似性为99.06%,BnC04.WRKY15与甘蓝蛋白的相似性为99.09%。系统进化树分析显示:BnWRKY15s蛋白与白菜、甘蓝、花椰菜蛋白属于同一进化分支,亲缘关系较近。BnWRKY15s在根部的表达量最高,达到叶组织的99.1倍。经过75 mg/L Sb溶液处理0、1、3、6、12和24 h后,BnA04.WRKY15和BnC04.WRKY15的表达量呈先上升后下降再缓慢上升的变化趋势,且在叶组织中的表达量于处理1 h后达到峰值,而在根组织中的表达量于处理24 h后达到峰值。
在甘蓝型油菜中,BnWRKY15s基因可能作为关键转录因子参与调控Sb胁迫反应。
Cloning of BnWRKY15s Gene and Expression Analysis under Antimony Stress in Brassica napus
To clone the BnWRKY15s gene in Brassica napus and explore its role under antimony (Sb) stress.
Using B. napus variety Xianzayou512 as the material, the BnWRKY15s gene was cloned by RT-PCR. Bioinformatics and qRT-PCR were applied to analyze its protein structure, physicochemical properties, expression patterns, and its expression response to Sb stress.
The BnA04.WRKY15 and BnC04.WRKY15 genes were successfully cloned, with cDNA sequences of 960 and 996 bp, respectively; encoding 319 and 331 amino acids, respectively. The molecular weight of BnA04.WRKY15 was 34.63 ku, with an isoelectric point of 9.75; the molecular weight of BnC04.WRKY15 was 35.81 ku, with an isoelectric point of 9.75. Both proteins were identified as unstable hydrophilic proteins, with the dominant secondary structure being random coil, followed by alpha helix. Sequence alignment showed that BnA04.WRKY15 shared 99.06% similarity with B. rapa, while BnC04.WRKY15 had 99.09% similarity with B. oleracea. Phylogenetic tree analysis placed BnWRKY15s proteins in the same evolutionary branch with B. rapa, B. oleracea, and B. cretica, indicating a close evolutionary relationship. The expression level of BnWRKY15s was the highest in root, 99.1 times higher than that in leaf. After treatment with 75 mg/L Sb solution for 0, 1, 3, 6, 12, and 24 hours, the expression level of BnA04.WRKY15 and BnC04.WRKY15 initially increased, then decreased, followed by a slow rise. The highest relative expression level in leaves occurred at 1 hour, while the highest expression level in roots occurred at 24 hours.
BnWRKY15s may play a key role as a transcription factor in regulating Sb stress responses in B. napus.
-
Keywords:
- Brassica napus /
- antimony stress /
- BnWRKY15s /
- gene cloning /
- transcription factor
参考文献
[1] | 王丽. 锑、镉、锰在头花蓼中的累积分布及健康风险评价[D]. 贵阳: 贵州大学, 2018. |
[2] | 李中平. 中国锑行业发展现状及高质量发展建议[J]. 中国国土资源经济, 2021, 34(3): 17. DOI: 10.19676/j.cnki.1672-6995.000538. |
[3] |
HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma: geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545. DOI: 10.1016/j.envpol.2017.01.057. |
[4] |
XU Z N, YANG Z F, ZHU T, et al. Toxicity of soil antimony to earthworm Eisenia fetida (Savingy) before and after the aging process[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111278. DOI: 10.1016/j.ecoenv.2020.111278. |
[5] |
ABBASI S, LAMB D T, CHOPPALA G, et al. Antimony speciation, phytochelatin stimulation and toxicity in plants[J]. Environmental Pollution, 2022, 305: 119305. DOI: 10.1016/j.envpol.2022.119305. |
[6] |
SALAM M A, MOHAMED R M. Removal of antimony (Ⅲ) by multi-walled carbon nanotubes from model solution and environmental samples[J]. Chemical Engineering Research and Design, 2013, 91(7): 1352. DOI: 10.1016/j.cherd.2013.02.007. |
[7] | 段晓尘. 重金属和有机污染物对赤子爱胜蚓(Eisenia fetida)的生态毒理效应及机制差异[D]. 南京: 南京农业大学, 2015. |
[8] | 殷志遥, 和君强, 刘代欢, 等. 土壤锑、砷污染风险评估与富集植物筛选: 以湖南某锑矿山为例[J]. 现代矿业, 2018, 34(8): 216. DOI: 10.3969/j.issn.1674-6082.2018.08.067. |
[9] | 王丽, 杨爱江, 邓秋静, 等. 贵州独山锑矿区土壤—头花蓼系统中重金属的分布特征[J]. 生态学杂志, 2017, 36(12): 3545. DOI: 10.13292/j.1000-4890.201712.005. |
[10] |
COJOCARU P, GUSIATIN Z M, CRETESCU I. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus)[J]. Environmental Science and Pollution Research, 2016, 23(11): 10693. DOI: 10.1007/s11356-016-6176-5. |
[11] |
GASIC K, KORBAN S S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn[J]. Planta, 2007, 225(5): 1277. DOI: 10.1007/s00425-006-0421-y. |
[12] | 杨志新, 钟伟, 秦丽, 等. 9个油菜品种根系形态与镉铅累积关系及机理初步分析[J]. 云南农业大学学报(自然科学), 2018, 33(5): 916. DOI: 10.12101/j.issn.1004-390X(n).201701029. |
[13] |
QIAO D M, LU H F, ZHANG X X. Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere[J]. Environmental Pollution, 2020, 267: 115452. DOI: 10.1016/j.envpol.2020.115452. |
[14] |
NABEEL K N, IRSHAD B, AYESHA F, et al. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response[J]. International Journal of Phytoremediation, 2017, 19(7): 670. DOI: 10.1080/15226514.2016.1278427. |
[15] |
YUAN H Y, LIU Q Q, FU J H, et al. Co-exposure of sulfur nanoparticles and Cu alleviate Cu stress and toxicity to oilseed rape Brassica napus L.[J]. Journal of Environmental Sciences, 2023, 124: 319. DOI: 10.1016/j.jes.2021.09.040. |
[16] |
MOURATO M P, MOREIRA I N, LEITAO I, et al. Effect of heavy metals in plants of the genus Brassica[J]. International Journal of Molecular Sciences, 2015, 16(8): 17975. DOI: 10.3390/ijms160817975. |
[17] |
RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247. DOI: 10.1016/j.tplants.2010.02.006. |
[18] |
SAHA B, NAYAK J, SRIVASTAVA R, et al. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling[J]. Planta, 2023, 259(1): 7. DOI: 10.1007/s00425-023-04269-y. |
[19] |
KHOSO M A, HUSSAIN A, RITONGA F N, et al. WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants[J]. Frontier in Plant Science, 2022, 13: 1039329. DOI: 10.3389/fpls.2022.1039329. |
[20] |
GOYAL P, DEVI R, VERMA B, et al. WRKY transcription factors: evolution, regulation, and functional diversity in plants[J]. Protoplasma, 2023, 260(2): 331. DOI: 10.1007/s00709-022-01794-7. |
[21] | 王茹. 番茄SlWRKY6基因克隆及重金属胁迫相关性研究[D]. 哈尔滨: 哈尔滨师范大学, 2021. |
[22] | 王茹, 陈超, 于丽杰, 等. 番茄SlWRKY6基因克隆及其在重金属胁迫下的表达分析[J]. 华北农学报, 2021, 36(1): 54. DOI: 10.7668/hbnxb.20191310. |
[23] | 彭喜旭, 白宁宁, 王海华. 响应镉胁迫的水稻WRKY15转录因子基因的分离与表达特征[J]. 中国水稻科学, 2018, 32(2): 103. DOI: 10.16819/j.1001-7216.2018.7056. |
[24] | 马艳琪. 拟南芥WRKY28和WRKY29调控铝胁迫耐性的分子机制[D]. 济南: 山东大学, 2018. |
[25] |
HE Y J, MAO S S, GAO Y L, et al. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus[J]. PLoS One, 2016, 11(6): e0157558. DOI: 10.1371/journal.pone.0157558. |
[26] |
CHEN X, TRUKSA M, SHAH S, et al. A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus[J]. Analytical Biochemistry, 2010, 405(1): 138. DOI: 10.1016/j.ab.2010.05.032. |
[27] |
JAVED T, GAO S J. WRKY transcription factors in plant defense[J]. Trends in Genetics, 2023, 39(10): 787. DOI: 10.1016/j.tig.2023.07.001. |
[28] | 张文静, 李思, 刘杨, 等. 中间锦鸡儿WRKY15基因克隆及其生物信息学分析[J]. 中国草地学报, 2019, 41(4): 23. DOI: 10.16742/j.zgcdxb.20180216. |
[29] |
GU L, HOU Y Y, SUN Y Y, et al. The maize WRKY transcription factor ZmWRKY64 confers cadmium tolerance in Arabidopsis and maize (Zea mays L.)[J]. Plant Cell Reports, 2024, 43(2): 44. DOI: 10.1007/s00299-023-03112-8. |
[30] |
CAI Z D, XIAN P Q, WANG H, et al. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes[J]. Frontiers in Plant Science, 2020, 11: 724. DOI: 10.3389/fpls.2020.00724. |
[31] |
XIAN P Q, YANG Y, XIONG C W, et al. Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds[J]. Frontiers in Plant Science, 2023, 14: 1133892. DOI: 10.3389/fpls.2023.1133892. |
[32] |
CHEN X X, WU X L, HAN C Y, et al. A WRKY transcription factor, PyWRKY71, increased the activities of antioxidant enzymes and promoted the accumulation of cadmium in poplar[J]. Plant Physiology and Biochemistry, 2023, 205: 108163. DOI: 10.1016/j.plaphy.2023.108163. |
[33] |
WU X L, CHEN Q, CHEN L L, et al. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113630. DOI: 10.1016/j.ecoenv.2022.113630. |
[34] |
DING Z J, YAN J Y, XU X Y, et al. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis[J]. The Plant Journal, 2013, 76(5): 825. DOI: 10.1111/tpj.12337. |
[35] |
YU F F, HUAXIA Y F, LU W J, et al. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development[J]. BMC Plant Biology, 2012, 12: 144. DOI: 10.1186/1471-2229-12-144. |
[36] |
VANDERAUWERA S, VANDENBROUCKE K, INZÉ A, et al. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2012, 109(49): 20113. DOI: 10.1073/pnas.1217516109. |