• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

叶面喷施丝氨酸缓解三七热胁迫机制初探

苏应威, 刘海娇, 左登鸿, 徐杰, 徐志贤, 马淼, 杨敏, 朱书生

苏应威, 刘海娇, 左登鸿, 等. 叶面喷施丝氨酸缓解三七热胁迫机制初探[J]. 云南农业大学学报(自然科学), 2023, 38(6): 987−996. DOI: 10.12101/j.issn.1004-390X(n).202303008
引用本文: 苏应威, 刘海娇, 左登鸿, 等. 叶面喷施丝氨酸缓解三七热胁迫机制初探[J]. 云南农业大学学报(自然科学), 2023, 38(6): 987−996. DOI: 10.12101/j.issn.1004-390X(n).202303008
SU Yingwei, LIU Haijiao, ZUO Denghong, et al. Preliminary Study on the Mechanism of Foliar Spraying of Serine to Alleviate Heat Stress in Panax notoginseng[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(6): 987-996. DOI: 10.12101/j.issn.1004-390X(n).202303008
Citation: SU Yingwei, LIU Haijiao, ZUO Denghong, et al. Preliminary Study on the Mechanism of Foliar Spraying of Serine to Alleviate Heat Stress in Panax notoginseng[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(6): 987-996. DOI: 10.12101/j.issn.1004-390X(n).202303008

叶面喷施丝氨酸缓解三七热胁迫机制初探

基金项目: 国家自然科学基金项目(32060719);云南省中青年后备人才项目(202005AC160045);云南省创新团队(202105AE160016);云南省农林联合重点项目(202101BD070001-003);云南省科技特派团(202104BI090001)。
详细信息
    作者简介:

    苏应威(1997—),男,云南昆明人,在读博士研究生,主要从事生物多样性与病害控制研究。E-mail:13708485770@163.com

    通信作者:

    朱书生(1979—),男,云南曲靖人,博士,教授,主要从事生物多样性控制病害研究。E-mail:shushengzhu79@126.com

  • 中图分类号: S567.236.01

摘要:
目的 

探索叶面喷施丝氨酸对三七热胁迫的缓解效应及潜在机制。

方法 

室内利用光照培养箱设置36 ℃高温处理盆栽三七15 d,期间每2 d分别喷施1次1、3和5 mmol/L的丝氨酸溶液,处理结束后调查三七病叶率。在田间利用自然高温环境胁迫三七,每3 d分别喷施1次与室内相同浓度的丝氨酸溶液,胁迫时间延长至30 d,调查三七病叶率以及高温对三七生物量和皂苷含量的影响。测定室内盆栽的三七抗氧化酶活性及代谢物含量变化,阐释丝氨酸缓解三七热胁迫的初步机制。

结果 

喷施3和5 mmol/L丝氨酸可显著降低盆栽三七病叶率(P<0.05);1、3和5 mmol/L丝氨酸均可显著降低田间三七病叶率(P<0.05),增加其单株干质量以及人参皂苷Rg1、Re、Rb1和Rd含量。1和3 mmol/L丝氨酸可显著提高盆栽三七叶片超氧化物歧化酶(SOD)活性(P<0.05),3 mmol/L丝氨酸可显著提高其过氧化物酶(POD)活性(P<0.05)。KEGG富集分析表明:丝氨酸处理后一些非酶抗氧化代谢物如糖醇和氨基酸在叶片中大量积累;与植物耐热性相关的糖类物质如蔗糖和海藻糖积累量增加;三羧酸循环中重要代谢产物如柠檬酸、乌头酸和琥珀酸的积累也增加,有助于改善三七的能量供应。

结论 

外源喷施丝氨酸能降低热胁迫下三七病叶率,提高三七生物量和皂苷积累,初步认为其机制与提高三七的抗氧化能力以及增强碳水化合物代谢相关。

 

Preliminary Study on the Mechanism of Foliar Spraying of Serine to Alleviate Heat Stress in Panax notoginseng

Abstract:
Purpose 

To explore the alleviating effect and potential mechanism of foliar spraying serine on heat stress of Panax notoginseng.

Methods 

Indoor potted P. notoginseng plants were subjected to a 36 ℃ high-temperature treatment for 15 days using a light incubator. During the treatment period, serine solutions with concentrations of 1, 3 and 5 mmol/L were sprayed every two days, and the rate of diseased leaves of P. notoginseng was investigated at the end of treatment. In the field, P. notoginseng was exposed to natural high-temperature conditions, and serine solution with the same concentrations as used indoors were sprayed every three days. The duration of the heat stress treatment was extended to 30 days, the rate of diseased leaves of P. notoginseng and the effects of high temperature on the biomass and saponin content of P. notoginseng were examined. Antioxidant enzyme activity and metabolite changes in indoor potted P. notoginseng plants were measured to elucidate the preliminary mechanism by which serine alleviates heat stress in P. notoginseng.

Results 

Spraying serine at concentrations of 3 and 5 mmol/L significantly reduced the rate of diseased leaves in potted P. notoginseng (P<0.05). Spraying 1, 3, and 5 mmol/L serine significantly reduced the rate of diseased leaves in field-grown P. notoginseng plants (P<0.05), and increased the dry weight of per plant as well as the content of ginsenosides Rg1, Re, Rb1, and Rd. Spraying 1 and 3 mmol/L serine significantly increased the activity of superoxide dismutase (SOD) in potted P. notoginseng leaves (P<0.05), while spraying 3 mmol/L serine significantly increased peroxidase (POD) activity (P<0.05). KEGG enrichment analysis showed that non-enzymatic antioxidant metabolites such as sugar alcohols and amino acids accumulated in large amounts in the leaves after serine treatment. The accumulation of heat stress-related carbohydrates such as sucrose and trehalose also increased. In addition, important metabolites in the tricarboxylic acid cycle such as citric acid, aconitic acid, and succinic acid showed increased accumulation, which contributed to improve energy supply in P. notoginseng.

Conclusion 

Exogenous foliar application of serine reduces the incidence of diseased leaves, increases biomass, and enhances saponin accumulation in P. notoginseng under heat stress. These effects are likely associated with improved antioxidant capacity and enhanced carbohydrate metabolism in P. notoginseng.

 

  • 青贮涉及复杂的微生物相互作用,其中乳酸菌在青贮过程中发挥重要作用[1],它能酸化牧草并限制和破坏微生物(如霉菌和细菌)的生长,可最大限度保存饲料营养成分[2]。在众多微生物添加剂中,乳酸菌添加剂由于其高效生产代谢物的能力及廉价、环保的特点,被认为是动物饲料生产的天然添加剂,广泛应用于牧草发酵[3]。添加乳酸菌的青贮饲料不仅乳酸含量高于传统发酵的青贮饲料,还可有效提高饲料的干物质回收率[4]。此外,青贮乳酸杆菌能产生3-羟基癸酸,抑制毕赤酵母、烟曲霉和娄地青霉的生长[5],可抑制青贮饲料和反刍动物瘤胃中的有害微生物,从而提高动物的健康性能[6]。但由于青贮发酵过程中产生的微生物群体较为复杂,同一种微生物添加剂在不同地区、原料和气候的影响下对实际生产的效果不同,因此根据具体情况从生产当地分离和筛选优质乳酸菌用于实践对提高青贮品质具有重大现实意义[7]

    青贮饲料具有原料来源广的特点,因地制宜地选择青贮饲料原料是降低饲料成本的有效方式[8]。秸秆是成熟农作物茎叶(穗)部分的总称,中国每年秸秆总产量超过7亿t,大部分被就地焚烧[9]。蚕豆秸秆具有较高的营养和饲喂价值,但目前有关蚕豆秸秆青贮料及其乳酸菌添加剂处理的研究较少[10]。因此,本研究从巨菌草青贮中分离鉴定具有较强抗菌性能的乳酸菌,并研究其菌株特性,使用优势乳酸菌进行发酵试验,以期为蚕豆秸秆的发酵利用提供理论指导。

    巨菌草青贮产物来自云南省畜牧兽医科学院。MRS培养基购自青岛海博生物公司,革兰氏染色试剂盒购自北京兰杰柯公司;药敏片购自杭州滨和公司;ELISA试剂盒购自上海酶联生物公司。

    取青贮样品5 g与MRS培养液100 mL混匀,菌液接种至MRS培养基,挑选单菌落接种培养,反复挑斑、划板,直至在平板上形成单一纯菌株,编号后贮存于4 ℃冰箱备用。

    菌液接种至MRS培养基培养后,再接种到相应液体培养液中培养,之后进行革兰氏染色。待测菌接种到MRS培养液30 ℃培养24 h,提取总DNA,采用细菌16S rDNA通用引物27F (5′-AGAGTTTGATCCTGGCTCAG-3′)和1 492R (5′-TAGGGTTACC-TTGTTACGACTT-3′)进行PCR,产物送至昆明擎科有限公司测序。

    按照1∶1 000 (体积比)将R-01接种到MRS培养液中,30 ℃培养24 h,每隔2 h测定600 nm处的吸光度值(OD600)和pH值,绘制生长曲线及产酸曲线。

    以金黄葡萄球菌(Staphylococcus aureus)、大肠杆菌(Escherichia coil)和鼠伤寒沙门氏杆菌(Salmonella typhimurium)为指示菌配制105 CFU/mL的4 mm直径孔平板,加入菌液5 µL,30 ℃培养24 h,用游标卡尺测量抑菌圈直径。

    将待测菌加入40 ℃的MRS培养基中,接种量1%,摇匀后倒平板。将卡那霉素、庆大霉素和青霉素药敏片贴至培养基表面,30 ℃培养24 h,使用电子游标卡尺测量抑菌圈直径,通过CLSI指南确定其抗生素敏感性[11]

    将蚕豆秸秆和磨碎米糠按照3∶1 (质量比)混合,向其中加入R-01菌液(1 mL/kg)作为试验组,对照组加入同体积无菌水。混匀后各组分装3份作为平行试验组,抽真空发酵35 d。发酵完成后每个平行组分别取1个样品,测定pH值,根据《青贮饲料质量评定标准》[12]进行感官评价,并测定含水率以及中性洗涤纤维、酸性洗涤纤维、干物质、粗灰分、粗蛋白、粗纤维和粗脂肪含量。

    使用ELISA试剂盒构建标准曲线,并测定青贮饲料中呕吐毒素、T2毒素和黄曲霉毒素的含量。

    结果用“平均值±标准误”表示。用GraphPad Prism 8.0软件进行统计分析,两两比较用t-检验,多组间比较用one-way ANOVA检验。

    从巨菌草青贮中分离出7株可以抑制大肠杆菌、鼠伤寒沙门氏菌和金黄色葡萄球菌的菌株,利用凝胶打孔法对7株菌进行对比,筛选出1株抑菌圈直径最大、透明度高的菌株,命名为R-01 (图1)。

    图  1  乳酸菌对3种病原菌的拮抗能力分析
    注:不同小写字母表示差异显著(P<0.05)。
    Figure  1.  Analysis of antagonistic ability of lactic acid bacteria against three pathogens
    Note: Different lowercase letters indicate significant differences (P<0.05); SA. Staphylococcus aureus; EC. Escherichia coil; ST. Salmonella typhimurium.

    R-01在MRS培养基上生长时呈典型的乳酸菌特征:乳白色、圆形、凸起,革兰氏阳性;单菌落镜检呈杆状、单生或多个串生(图2 )。

    图  2  菌落形态特征(a)和革兰氏染色结果(b)
    Figure  2.  Morphological characteristic (a) and Gram staining result (b)

    经测序和比对,R-01与植物乳杆菌(Lactobacillus plantarum) KJ026699.1、KX078316.1、ON254155.1、AB904768.1、MT613642.1、MT611702.1、MT604643.1和MT538617.1的同源性高达100% (图3图4)。综合形态学特征及染色结果,将R-01鉴定为植物乳杆菌,命名为L. plantarum R-01,并获得其GenBank登录号为OP459306。

    图  3  植物乳杆菌R-01的16S rRNA序列系统进化树
    Figure  3.  Phylogenetic tree of 16S rRNA sequence of Lactobacillus plantarum R-01
    图  4  植物乳杆菌R-01的同源性比较
    Figure  4.  Homology comparison of L. plantarum R-01

    图5可知:R-01生长停滞期很短,0~2 h生长速度较缓慢,2 h后进入对数期,14 h后进入稳定期,随后略有降低,但基本保持一致;随着时间推移,R-01的pH值呈下降趋势,18 h达到最低值(3.6),随后略有浮动,但基本保持一致。

    图  5  植物乳杆菌R-01的生长和产酸曲线
    Figure  5.  Curve of growth and acid producing of L. plantarum R-01

    R-01对青霉素产生的抑菌圈直径为(4.40±0.16) mm,对卡那霉素和庆大霉素产生的抑菌圈直径均为(0±0) mm。根据CLSI耐药性指南[11]的判断标准(抑菌圈≤14 mm即为具有耐药性),R-01对上述3种抗生素均具有耐药性。

    表1可知:与对照组相比,试验组的pH值极显著降低(P<0.01),粗蛋白含量显著降低(P<0.05),粗纤维含量显著增加(P<0.05),粗脂肪含量极显著增加(P<0.01)。青贮感官评价结果显示:添加R-01发酵后,蚕豆秸秆呈黄绿色,芳香酸味;对照组蚕豆秸秆呈黄褐色,有轻微刺鼻酸味;两者的茎叶结构均保持良好;试验组的等级优于对照组。

    表  1  化学成分分析
    Table  1.  Chemical composition analysis
    组别
    groups
    含水率/%
    water content
    干物质/%
    dry matter
    粗灰分/%
    crude ash
    粗纤维/%
    crude fiber
    中性洗涤纤维/%
    neutral detergent fiber
    对照组 control group 58.17±0.19 96.99±0.61 13.34±0.06 23.01±0.51 60.39±0.34
    试验组 experimental group 57.94±0.04 96.16±0.45 13.10±0.09 25.50±1.01* 59.77±0.33
    组别
    groups
    酸性洗涤纤维/%
    acid detergent fiber
    粗蛋白/%
    crude protein
    粗脂肪/%
    crude fat
    pH值
    pH value
    对照组 control group 60.09±0.18 5.45±0.00 0.38±0.06 4.26±0.01
    试验组 experimental group 59.74±0.46 5.28±0.02* 1.10±0.16** 4.03±0.01**
    注:“*”表示差异显著 (P<0.05),“**”表示差异极显著 (P<0.01);下同。
    Note: “*” indicates significant differences (P<0.05), “**” indicates extremely significant differences (P<0.01); the same as below.
    下载: 导出CSV 
    | 显示表格

    通过ELISA试剂盒构建的呕吐毒素、黄曲霉毒素和T2毒素的标准曲线R2分别为0.999、0.987和1.000。使用上述标准曲线计算得出饲料中3种霉菌毒素的含量(表2)均显著或极显著低于对照组(P<0.05或P<0.01)。

    表  2  霉菌毒素含量
    Table  2.  Mycotoxin content ng/mL
    组别
    groups
    呕吐毒素
    deoxynivalenol
    黄曲霉毒素
    aflatoxin
    T2毒素
    T2 toxin
    对照组
    control group
    143.95±10.05 0.84±0.03 30.79±1.14
    试验组
    experimental group
    80.80±4.56* 0.34±0.00** 15.24±1.03**
    下载: 导出CSV 
    | 显示表格

    生长速度和产酸能力是评价乳酸菌在相同条件下利用资源能力的主要参数,是筛选优良乳酸菌的重要指标[13]。MCDONALD等[14]认为乳酸菌添加剂应具有生长速度快、产酸量大、能降低pH值和竞争能力强等优势,可抑制有害微生物生长并提升饲料营养。袁洁等[15]研究表明:生长2~12 h乳酸菌处于对数期,最大OD600值小于1.6;YANG等[16]研究显示:生长3 h乳酸菌进入对数期,最大OD600值小于1.1,pH值大于4.5;徐媛[17]的研究中,乳酸菌生长2~8 h处于对数期,pH值大于4。DAUGHTRY等[18]和AGUIRRE-EZKAURIATZA等[19]研究发现:乳酸菌生长达到峰值后,先降低再进入稳定期。以上研究与本研究结果相似,但本研究的R-01具有更短的生长迟滞期、更大的菌液浓度、更强的产酸能力和更快的产生速度,因此,R-01在作为乳酸菌接种剂方面具有更大潜力。R-01生长14 h到达峰值后,先有一定程度降低再进入稳定期,这可能是因为乳酸菌生长过程中不断地发酵产出乳酸,随着乳酸浓度增大,pH值降低,乳酸菌的生长受到抑制;当乳酸菌凋亡速度大于乳酸菌生长速度时,乳酸菌的活菌数量开始降低。

    已有研究发现:乳酸菌的拮抗活性与青贮发酵品质相关[20],食物链是抗生素耐药菌在动物和人类之间传播的关键途径之一[21],拮抗活性和抗生素耐药性也是筛选乳酸菌的重要标准之一。研究证明:乳酸菌可抑制金黄色葡萄球菌[22]、大肠杆菌[23]和鼠伤寒沙门氏菌[24],与本研究结果一致。本研究中,R-01对3种抗生素产生的抑菌圈大于已有研究[22-24],说明R-01具有更强的拮抗能力。在耐药性方面,冯伟等[25]的研究表明大部分乳杆菌对庆大霉素和青霉素敏感;万倩等[26]的研究结果显示乳杆菌对庆大霉素和青霉素敏感,小部分对卡那霉素有耐药性;陈大卫等[27]的耐药性试验中,所有菌株对卡那霉素耐药,仅少数菌株对庆大霉素中等敏感。本研究中,R-01在青霉素、卡那霉素和庆大霉素下产生的抑菌圈均小于5 mm,表明R-01具有很好的广谱抗生素耐药性。

    青贮接种剂是近年来反刍动物饲料保存研究的热点之一,目前普遍认为优质的青贮饲料pH值小于4.2[28]。本研究中,添加R-01的蚕豆秸秆青贮pH值降至4.2以下,发酵结果与添加乳酸菌发酵花生[29]、甘薯藤[30]、玉米[31]、大豆[32]和紫花苜蓿[33]青贮饲料相似,且R-01的产酸能力更强;此外,与上述研究相比,蚕豆秸秆青贮饲料的多种营养物质表现出不同的变化,这可能是由于蚕豆秸秆中化学成分的含量、菌株的分解能力以及发酵时间不同所致。本研究中,R-01处理后的蚕豆秸秆青贮粗蛋白含量显著低于未处理的蚕豆秸秆青贮,这可能是由于R-01利用非蛋白氮的能力较差或蚕豆秸秆中非蛋白氮含量较少所致。本研究处理后的蚕豆青贮粗纤维和粗脂肪含量显著或极显著增加,但在上述前人研究中并未发现类似情况,这可能与R-01较强的产酸和抑菌能力有关,R-01能更快地抑制青贮饲料中的腐败微生物,减少了粗脂肪和粗脂肪的消耗。从蚕豆秸秆青贮的发酵结果可以看出,添加R-01的青贮饲料有良好的产酸能力和拮抗活性。

    青贮饲料的气味、颜色和结构评估是确定青贮饲料物理质量的最佳方法[34]。本研究中,相较于自然发酵,使用R-01乳酸菌添加剂的青贮蚕豆秸秆饲料保持了青贮原料的颜色,减少了刺鼻酸味,与ERGIN等[34]和YAN等[35]的研究结果一致。ZHANG等[36]研究表明:青贮饲料中产生的刺鼻酸味与乙酸含量有关,乙酸的产生与葡糖醋杆菌属和肠杆菌属在青贮中的生长有关,它们会将乳酸转化为乙酸和其他有机酸,从而导致pH值升高和发酵质量受损[37]。因此,抑制葡糖醋杆菌属和肠杆菌属在青贮蚕豆饲料中的生长,可能是R-01乳酸菌添加剂使青贮蚕豆秸秆感官评价提高的原因。

    消除食品或饲料中的霉菌毒素备受关注。在田间、收获前、收获和青贮阶段,常采取多种措施来限制青贮饲料产生霉菌毒素[38],其中,使用微生物或酶进行生物净化和生物降解是消除霉菌毒素的最佳解决方案。已有研究[39-41]发现:乳酸菌可降低饲料中的黄曲霉毒素,但对呕吐毒素和T2毒素的抑制效果不显著。GB 12078.3—2006和GB 21693—2008规定饲料中呕吐毒素和T2毒素的含量不能大于1000 ng/mL;世界卫生组织建议饲料中黄曲霉毒素总量小于15 ng/mL,本研究青贮饲料中霉菌毒素含量均低于限定值,且R-01可使青贮饲料中黄曲霉毒素、呕吐毒素和T2毒素含量显著或极显著降低,表明R-01具有更广谱的霉菌抑制能力。

    R-01具有生长快、pH值下降速度快、拮抗活性强和抗生素耐药性强的特性。添加R-01进行发酵可有效改善饲料化学成分和感官评价等指标,降低饲料中霉菌毒素含量,是优良的青贮接种剂菌种。

  • 图  1   热胁迫下外源丝氨酸叶面喷施对室内盆栽三七和田间三七的影响

    注:“*”表示两两比较差异显著(P<0.05);不同小写字母表示多组处理间差异显著(P<0.05)。

    Figure  1.   Effects of exogenous serine foliar spraying on the potted and field-grown Panax notoginseng under heat stress

    Note: “*” indicates significant differences between two comparisons (P<0.05); different lowercase letters indicate significant differences among multiple treatment groups (P<0.05).

    图  2   外源喷施丝氨酸对三七代谢谱的影响

    注:L1、L3和L5分别表示1、3和5 mmol/L丝氨酸处理组;下同。a) 代谢产物的主成分分析;b) 差异代谢物Venn分析;c) 差异代谢物相对含量。

    Figure  2.   Effects of exogenous serine spraying on the metabolic profile of P. notoginseng

    Note: L1, L3, and L5 indicates 1, 3, and 5 mmol/L serine treatment group, respectively; the same as below. a) the principal component analysis of metabolites; b) the Venn analysis of differential metabolites; c) the relative content of differential metabolites.

    图  3   差异代谢物代谢通路

    注:a) 差异代谢物KEGG富集分析;b) 显著富集通路的Venn分析;c) 显著富集的通路。

    Figure  3.   Metabolic pathway of differential metabolites

    Note: a) KEGG enrichment analysis of differential metabolites; b) Venn analysis of significantly enriched pathways; c) pathway commonly significantly enriched.

    表  1   OPLS-DA模型解释率

    Table  1   Explanation rate of OPLS-DA model

    比较组 comparative groups R2X R2Y Q2
    CK-vs-L1 0.606 0.994 0.976
    CK-vs-L3 0.599 0.996 0.973
    CK-vs-L5 0.609 0.994 0.979
    注:L1、L3和L5分别表示1、3和5 mmol/L丝氨酸处理组。
    Note: L1, L3, and L5 indicate 1, 3, and 5 mmol/L serine treatment group, respectively.
    下载: 导出CSV

    表  2   差异代谢物代谢通路注释结果

    Table  2   Differential metabolites pathways annotation results

    代谢物 metabolites log2FC KEGG通路 KEGG pathway
    CK-vs-L1 CK-vs-L3 CK-vs-L5
    半乳糖醇 galactinol −1.07 −1.44 −0.90 ko00052
    肌醇 inositol 11.54 11.07 11.55 ko00052;ko00562;ko04070
    甘油 glycerol 1.92 1.53 2.30 ko00052;ko00561
    海藻糖 trehalose 3.62 2.69 3.11 ko00500
    α-D-半乳糖 α-D-galactose 5.47 5.67 7.29 ko00052
    蔗糖 sucrose 14.07 13.82 13.99 ko00052;ko00500
    N-乙酰基-D-葡糖糖胺 N-acetyl-D-glucosamine 7.92 7.32 8.13 ko00520
    苯丙氨酸 phenylalanine 7.30 6.69 7.09 ko00400;ko00360
    酪氨酸 tyrosine 7.00 6.33 6.71 ko00400;ko00350;ko00950
    丙氨酸 alanine 1.54 1.50 1.76 ko00250
    天冬酰胺 asparagine 7.93 7.61 7.79 ko00250
    天冬氨酸 aspartic acid 5.35 5.27 5.57 ko00250;ko00220;ko00260
    苏氨酸 threonine 7.12 6.55 7.08 ko00260
    4-氨基丁酸 4-aminobutyric acid 9.62 9.91 9.95 ko00650;ko00330;ko00250
    L-鸟氨酸 L-ornithine 6.58 5.85 6.39 ko00330;ko00220
    脯氨酸 proline 8.55 7.29 7.93 ko00330
    谷氨酸 glutamic acid 9.85 10.18 6.42 ko00650;ko00630;ko00330;ko00250;ko00220;ko00480
    谷氨酰胺 glutamine 7.77 7.54 7.79 ko00630;ko00250;ko00220
    5-氧脯氨酸 5-oxoproline 10.02 10.42 9.81 ko00480
    草酸 oxalate −0.70 −1.09 −0.39 ko00630
    琥珀酸 succinic acid 4.06 3.63 5.00 ko00650;ko00630;ko00020;ko00250
    柠檬酸 citric acid 11.04 10.75 10.89 ko00020;ko00630
    乌头酸 aconitic acid 2.03 1.60 2.29 ko00020;ko00630
    亚油酸 linoleic acid 7.16 6.78 6.54 ko00591
    注:log2FC>1表示倍数变化> 2;log2FC<−1表示倍数变化<0.5。
    Note: log2FC>1 represents fold change> 2; log2FC<−1 represents fold change<0.5.
    下载: 导出CSV
  • [1]

    LIU H J, GU H R, YE C, et al. Planting density affects Panax notoginseng growth and ginsenoside accumulation by balancing primary and secondary metabolism[J]. Frontiers in Plant Science, 2021, 12: 628294. DOI: 10.3389/fpls.2021.628294.

    [2] 张洁. 中药三七的药理作用及研究进展[J]. 中国卫生产业, 2017, 14(28): 40. DOI: 10.16659/j.cnki.1672-5654. 2017.28.040.
    [3]

    XIA P G, GUO H B, RU M, et al. Accumulation of saponins in Panax notoginseng during its growing seasons[J]. Industrial Crops and Products, 2017, 104(1): 287. DOI: 10.1016/j.indcrop.2017.04.045.

    [4] 王俊芳, 任晓丝, 王萌. 组分中药稳定性研究进展[J]. 中草药, 2022, 53(14): 4546. DOI: 10.7501/j.issn.0253-2670.2022.14.032.
    [5] 罗群, 游春梅, 官会林. 环境因素对三七生长影响的分析[J]. 中国西部科技, 2010, 9(9): 7. DOI: 10.3969/j.issn.1671-6396.2010.09.004.
    [6]

    SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction[J]. Physiologia Plantarum, 2006, 126(1): 45. DOI: 10.1111/j.0031-9317.2005.00582.x.

    [7] 全怡吉, 郭存武, 张义杰, 等. 不同温度处理对三七生理生化特性的影响及黑斑病敏感性测定[J]. 分子植物育种, 2018, 16(1): 262. DOI: 10.13271/j.mpb.016.000262.
    [8] 张强皓, 张金燕, 寸竹, 等. 光强和高温对三七光系统活性的影响[J]. 植物生理学报, 2020, 56(5): 1064. DOI: 10.13592/j.cnki.ppj.2019.0475.
    [9]

    XU L, SHOU J, GILL R A, et al. Effects of ZJ0273 on barley and growth recovery of herbicide-stressed seedlings through application of branched-chain amino acids[J]. Journal of Zhejiang University (Science B), 2019, 20(1): 71. DOI: 10.1631/jzus.B1700375.

    [10]

    KUMAR N, GAUTAM A, DUBEY A K, et al. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis[J]. Ecotoxicology and Environmental Safety, 2019, 173(30): 15. DOI: 10.1016/j.ecoenv.2019.02.017.

    [11]

    LI Z, PENG Y, HUANG B R. Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass ( Agro stis stolonifera)[J]. International Journal of Molecular Sciences, 2018, 19(6): 1623. DOI: 10.3390/ijms 19061623.

    [12]

    PRIYA M, SHARMA L, SINGH I, et al. Securing reproductive function in mungbean grown under high temperature environment with exogenous application of proline[J]. Plant Physiology and Biochemistry, 2019, 140: 136. DOI: 10.1016/j.plaphy.2019.05.009.

    [13]

    ROS R, MUÑOZ-BERTOMEU J, KRUEGER S. Serine in plants: biosynthesis, metabolism, and functions[J]. Trends in Plant Science, 2014, 19(9): 564. DOI: 10.1016/j.tplants.2014.06.003.

    [14]

    WADITEE R, BHUIYAN N H, HIRATA E, et al. Metabolic engineering for betaine accumulation in microbes and plants[J]. Journal of Biological Chemistry, 2007, 282(47): 34185. DOI: 10.1074/jbc.M704939200.

    [15] 左应梅, 张金渝, 杨天梅, 等. 温度胁迫对三七光合特性及生理指标的影响[J]. 南方农业学报, 2017, 48(12): 2147. DOI: 10.3969/j.issn.2095-1191.2017.12.05.
    [16]

    JI J, ZHU P, CUI F C, et al. The antagonistic effect of mycotoxins deoxynivalenol and zearalenone on metabolic profiling in serum and liver of mice[J]. Toxins, 2017, 9(1): 28. DOI: 10.3390/toxins9010028.

    [17]

    LIU H J, WU J Q, SU Y W, et al. Allyl isothiocyanate in the volatiles of Brassica juncea inhibits the growth of root rot pathogens of Panax notoginseng by inducing the accumulation of ROS[J]. Journal of Agricultural and Food Chemistry, 2021, 69(46): 13715. DOI: 10.1021/acs.jafc.1c05225.

    [18]

    YANG M, ZHANG X D, XU Y G, et al. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng[J]. PLoS One, 2015, 10(2): 5. DOI: 10.1371/journal.pone.0118555.

    [19]

    KOTAK S, LARKINDALE J, LEE U, et al. Complexity of the heat stress response in plants[J]. Current Opinion in Plant Biology, 2007, 10(3): 310. DOI: 10.1016/j.pbi.2007.04.011.

    [20]

    ZANDALINAS S I, BALFAGÓN D, ARBONA V, et al. Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus[J]. Frontiers in Plant Science, 2017, 8: 953. DOI: 10.3389/fpls.2017.00953.

    [21] 王译, 韩莹琰, 郝敬虹, 等. 褪黑素对高温胁迫下生菜抗氧化酶系统的影响[J]. 北京农学院学报, 2022, 37(2): 46. DOI: 10.13473/j.cnki.issn.1002-3186.2022.0209.
    [22]

    HASANUZZAMAN M, HOSSAIN M A, DA SILVA J A T, et al. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor[M]//VENKATESWARLU B, SHANKER A K, SHANKER C, et al. Crop stress and its management: perspectives and strategies. Dordrecht: Springer, 2012.

    [23]

    LI Y L, LIU Y F, ZHANG J G. Advances in the research on the AsA-GSH cycle in horticultural crops[J]. Frontiers of Agriculture in China, 2010, 4(1): 84. DOI: 10.1007/s11703-009-0089-8.

    [24]

    LESS H, GALILI G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses[J]. Plant Physiology, 2008, 147(1): 316. DOI: 10.1104/pp.108.115733.

    [25] 张阳, 刘海涛, 张昭, 等. 生物碱的生理生态功能及影响其形成的因素[J]. 中国农学通报, 2014, 30(28): 252.
    [26]

    JESPERSEN D, YU J, HUANG B R. Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass[J]. PLoS One, 2015, 10(3): e0123744. DOI: 10.1371/journal.pone.0123744.

    [27] 左玉. 多酚类化合物研究进展[J]. 粮食与油脂, 2013, 26(4): 6. DOI: 10.3969/j.issn.1008-9578.2013.04.004.
    [28]

    FARDUS J, HOSSAIN M S, FUJITA M. Modulation of the antioxidant defense system by exogenous L-glutamic acid application enhances salt tolerance in lentil ( Lens cu linaris Medik.)[J]. Biomolecules, 2021, 11(4): 587. DOI: 10.3390/biom11040587.

    [29] 贾琰, 赵宏伟, 王敬国, 等. 逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展[J]. 作物杂志, 2014, 162(5): 12. DOI: 10.16035/j.issn.1001-7283.2014.05.005.
    [30] 郝婷, 丁小涛, 金海军, 等. 高温对黄瓜生长的影响及设施栽培对策[J]. 上海农业学报, 2014, 30(2): 126. DOI: 10.3969/j.issn.1000-3924.2014.02.029.
    [31]

    XU Y, DU H M, HUANG B R. Identification of metabolites associated with superior heat tolerance in thermal bentgrass through metabolic profiling[J]. Crop Science, 2013, 53(4): 1631. DOI: 10.2135/cropsci2013.01.0045.

    [32]

    LI X J, LIN C, O’CONNOR P B. Glutamine deamidation: differentiation of glutamic acid and γ-glutamic acid in peptides by electron capture dissociation[J]. Analytical Chemistry, 2010, 82(9): 3606. DOI: 10.1021/ac902 8467.

    [33]

    LI Z, YU J J, PENG Y, et al. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass ( Agrostis stolonifera)[J]. Scientific Reports, 2016, 6(1): 6. DOI: 10.1038/srep30338.

    [34]

    ZHAO J G, LU Z J, WANG L, et al. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics[J]. International Journal of Molecular Sciences, 2020, 22(1): 118. DOI: 10.3390/ijms22010117.

    [35]

    CHENG Z X, GUO C, CHEN Z G, et al. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing[J]. Nature Communications, 2019, 10(1): 3325. DOI: 10.1038/s41467-019-11129-5.

    [36]

    ZIEGLER F, SEDDIKI L, MARION-LETELLIER R, et al. Effects of L-glutamine supplementation alone or with antioxidants on hydrogen peroxide-induced injury in human intestinal epithelial cells[J]. e-SPEN, 2011, 6(4): 211. DOI: 10.1016/j.eclnm.2011.07.001.

    [37]

    KAPLAN F, KOPKA J, HASKELL D W, et al. Exploring the temperature-stress metabolome of Arabidopsis[J]. Plant Physiology, 2004, 136(4): 4165. DOI: 10.1104/pp.104.052142.

    [38]

    RIZHSKY L, LIANG H J, SHUMAN J, et al. When defense pathways collide? The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiology, 2004, 134(4): 1683. DOI: 10.1104/pp.103.033 431.

    [39]

    GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proceedings of the National Academy of Sciences, 2002, 99(25): 15898. DOI: 10.1073/pnas.252637799.

    [40] 王迪, 罗音, 高亚敏, 等. 外施海藻糖对高温胁迫下小麦幼苗膜脂过氧化的影响[J]. 麦类作物学报, 2016, 36(7): 925. DOI: 10.7606/j.issn.1009-1041.2016.07.14.
    [41] 徐云刚, 詹亚光. 植物抗旱机理及相关基因研究进展[J]. 生物技术通报, 2009, 199(2): 13. DOI: 10.13560/j.cnki.biotech.bull.1985.2009.02.002.
    [42]

    SWEETLOVE L J, BEARD K F M, NUNES-NESI A, et al. Not just a circle: flux modes in the plant TCA cycle[J]. Trends in Plant Science, 2010, 15(8): 462. DOI: 10.1016/j.tplants.2010.05.006.

    [43] 赵秀琴, 张婷, 王文生, 等. 水稻低温胁迫不同时间的代谢物谱图分析[J]. 作物学报, 2013, 39(4): 725. DOI: 10.3724/SP.J.1006.2013.00720.
    [44]

    ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 321. DOI: 10.1016/j.cell.2016.08.029.

  • 期刊类型引用(2)

    1. 陈鑫珠,林平冬,岳稳,杨雅妮,邱水玲,郑向丽. 不同添加剂对蚕豆秸秆青贮品质及微生物多样性的影响. 草业学报. 2025(04): 164-174 . 百度学术
    2. 王慧,邓第伟. 益生菌应用于预防家兔腹泻的研究进展. 中国养兔杂志. 2024(05): 29-32 . 百度学术

    其他类型引用(2)

图(3)  /  表(2)
计量
  • 文章访问数:  1157
  • PDF下载量:  24
  • 被引次数: 4
出版历程
  • 通信作者:  朱书生 shushengzhu79@126.com
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-11-27
  • 网络首发日期:  2024-01-07

目录

/

返回文章
返回