裸果木超氧化物歧化酶基因家族鉴定及对盐胁迫的响应分析
鉴定裸果木超氧化物歧化酶(superoxide dismutase,SOD)基因家族成员组成,分析在NaCl胁迫下裸果木SOD基因在叶组织中的表达调控模式,并探索裸果木SOD基因家族对环境的适应性进化机制。
以裸果木叶组织为材料,利用植物生理学和生物信息学相关方法初步对裸果木SOD基因家族进行鉴定和盐胁迫下的表达分析。
共鉴定到7个SOD成员,FSD、CSD和MSD 3个亚家族组成模式为2∶3∶2,均受到纯化选择。裸果木SOD基因共包含7个蛋白保守基序,且均为亲水性蛋白质,但稳定性较差。叶片SOD酶活性随着NaCl质量分数的增大呈先增强后减弱的趋势,且在0.5% NaCl处理下活性最高;在1.5% NaCl处理下,SOD活性也显著高于对照。盐胁迫下,叶组织中FSD、CSD1、CSD3和MSD2基因表达显著上调,其中FSD1和CSD1基因表达最高。CSD1基因存在的变异位点可能会导致其蛋白质活性中心增大。
裸果木SOD基因家族包含7个成员,其中FSD1和CSD1基因在盐胁迫下的高表达可能是裸果木具有较强耐盐能力的原因之一。此外,FSD1和CSD1氨基酸位点突变导致的蛋白质亲水性升高和活性中心增大对提升SOD的催化活性有一定作用。
Identification of Superoxide Dismutase Gene Family in Gymnocarpos przewalskii and its Response to Salt Stress
To identify the members of the superoxide dismutase (SOD) gene family of Gymnocarpos przewalskii, analyze the expression regulation mode of the SOD gene in leaf tissues under NaCl stress, and explore the adaptive evolution mechanism of the SOD gene family of G. przewalskii to the environment.
Leaves of G. przewalskii were used as experimental materials, the SOD gene family of G. przewalskii was identified and expression pattern was analyzed by plant physiological method and bioinformatics.
Seven SOD genes were identified, and the composition pattern of its subfamily FSD, CSD and MSD was 2∶3∶2, which were all under purifying selection. The SOD gene family of G. przewalskii contained seven protein conserved motifs, and the proteins were hydrophilic with weak stability. SOD activity in G. przewalskii leaves increased firstly then decreased, reaching the highest at 0.5% NaCl treatment, and SOD activity at 1.5% NaCl treatment was also significantly higher than that under the control. Under salt stress, FSD, CSD1, CSD3 and MSD2 genes were all significantly up-regulated, among which FSD1 and CSD1 genes had the highest expression level. The variation site of CSD1 gene in G. przewalskii leaves may lead to the increase of protein active center.
The SOD gene family of G. przewalskii contains seven members, and the high expression of FSD1 and CSD1 genes under salt stress may be one of the reasons why G. przewalskii has strong salt tolerance. In addition, the increases of protein hydrophilicity and active center caused by amino acid site mutation of FSD1 and CSD1 have a certain effects on the catalytic activity of SOD.
-
瓦氏黄颡鱼(Pelteobagrus vachelli)属鲇形目(Siluriformes)鲿科(Bagridae)黄颡鱼属(Pelteobagrus),主要分布于长江的干支流及长期与长江相通的湖泊和溪流。瓦氏黄颡鱼肉质细嫩,味道鲜美,无肌间刺,营养成分丰富,是中国淡水优质经济型鱼类之一[1]。据2019《中国渔业统计年鉴》统计显示:全国黄颡鱼的总产量达到50万t。
小瓜虫病是瓦氏黄颡鱼养殖过程中极易感染的一种寄生虫性疾病。该病爆发于每年3—6月和9—11月,发病水温15~27 ℃。发病初期,病鱼上浮,离群独游,摄食减弱;发病后期,病鱼运动失调,呼吸受阻,肉眼可见体表、鳃和鳍等多处遍布白点。该病是鱼类常见的寄生虫性疾病,死亡率可高达100%[2]。引起该病的病原为多子小瓜虫(Ichthyophthirius multifiliis),其对几乎所有的淡水鱼类均有易感性,对无鳞鱼和鳞片不发达的鱼类危害尤为严重。病鱼死亡率极高,严重时可在2~3 d内造成全群死亡,被认为是鱼类的“癌症”。多子小瓜虫的防治方法主要有物理加温、化学治疗和生物疫苗防治等,但效果均不理想[3]。
2018年4月,在长江上游鱼类资源保护与利用四川省重点实验室养殖池塘(气温18~24 ℃)饲养的瓦氏黄颡鱼(150~200 g/尾)发生疾病。病鱼表现为不食,离群独游,沿池壁边缘游动,肉眼观察可见全身布满白点。病鱼鳃丝压片,光学显微镜观察发现:鳃丝内大量寄生虫,虫体呈圆形,可见清晰的马蹄形核;无菌接种未发现优势菌落,确诊该病的病原为多子小瓜虫。本研究就患小瓜虫病的瓦氏黄颡鱼进行系统的组织病理学观察,讨论分析其致病机理,为该病的防控策略研究奠定基础。
1. 材料与方法
1.1 病料样本和主要试剂
患小瓜虫病和健康的瓦氏黄颡鱼各6尾,体质量50~100 g,由长江上游鱼类资源保护与利用四川省重点实验室提供。石蜡、酒精、二甲苯、甲苯、伊红和苏木素等均购于成都市科隆化学品有限公司;爱先蓝−糖原染液(AB-PAS)购于南京建成生物工程研究所(批号:D033-1)。
1.2 症状观察与采样
对采集的患病瓦氏黄颡鱼进行临床症状和解剖症状观察。选取遍布小白点的瓦氏黄颡鱼6尾,用0.1 g/L MS-222麻醉致死后,用眼科剪采集有小白点的鳃,用玻片刮取体表黏液,分别用于鳃丝压片和黏液刮片观察;剖开鱼体腹腔和胸腔观察消化道、肝、脾、肾和心病变。
1.3 石蜡切片制作
取患病瓦氏黄颡鱼的鳃、皮肤、胃肠道、肝、脾、肾和心组织,用生理盐水清洗后,及时放入4%预冷的多聚甲醛固定液中。组织经固定48~72 h后,修整边缘;经过梯度乙醇脱水、甲苯透明和浸蜡后,使用石蜡对组织进行包埋。制备的石蜡包埋块用Leica轮转式切片机进行切片(厚度3 μm),45 ℃水温捞片,50 ℃展片,70 ℃烤片。20~30 min后取出,置于切片盒中,保存备用。每个石蜡组织块制备2块切片,分别用于苏木素伊红染色(HE)和AB-PAS染色。
1.4 HE染色
参照王德田等[4]配制Harris苏木精染液、沉淀酸化伊红Y乙醇液、分化液(1%盐酸酒精)和返蓝液(0.5%氨水)。按照常规HE染色步骤,使用二甲苯对石蜡切片进行脱蜡,梯度酒精复水,经自来水冲洗后进行染色,具体为:苏木精染液10 min→自来水冲洗→1%盐酸酒精分化3~5 s→自来水冲洗→0.5%氨水返蓝5 s→自来水冲洗→伊红3 min→自来水冲洗。染色结束后,经梯度酒精脱水、二甲苯透明,使用中性树胶进行封片。
1.5 AB-PAS染色
参照南京建成科技有限公司爱先蓝−糖原染液说明书进行AB-PAS染色。简要步骤为:石蜡切片常规脱蜡至水;爱先蓝染液染色10~20 min,水洗30 s;高碘酸染液染色10 min;水洗2~3 min;雪夫试剂染色3~5 min;水洗5 min;苏木素复染20~30 s;常规酒精脱水,二甲苯透明,中性树胶封片。
1.6 显微镜观察
干燥后的封片使用光学显微镜在(OLMPUS)×4、×10和×40倍物镜及×10倍目镜下观察小瓜虫的分布和各组织的病理变化,Motic BA 400采集图片用于病理结果分析。
2. 结果与分析
2.1 病鱼大体症状
正常鱼体反应敏锐,皮肤光滑,颜色青黄。患病后鱼体反应迟钝,颜色偏黄、不均匀,皮肤凹凸不平,全身皮肤、鳍和鳃等部位遍布白色小点。有时可见皮肤破损,破损处充血和发红,尚未见水霉寄生(图1a)。刮取体表“白点”和鳃丝压片,显微镜下观察可见圆形和卵圆形虫体(图1b、c)。剖检可见鱼体胃肠道内无食糜,内脏器官肿胀发白。
图 1 瓦氏黄颡鱼小瓜虫病的诊断注:a) 患病瓦氏黄颡鱼消瘦,皮肤遍布小白点,头部皮肤溃烂;b) 皮肤黏液涂片中的小瓜虫;c) 鳃丝压片中的小瓜虫。Figure 1. Diagnosis of P. vachelli infected by I. multifiliisNote: a) Infected P. vachelli exhibited emaciated with white dots throughout the skin, and the head showed ulcer; b) I. multifiliis observed in skin mucus smear; c) I. multifiliis observed in gill fillet.2.2 组织病理观察
鱼体受感染后,主要以皮肤和鳃病变最严重,表现为增生和坏死;心、脾、肾和肝水肿,并伴有一定程度的充血和出血;消化管道中,胃的损伤较小,前肠以水肿为主,后肠以充血和出血为主。小瓜虫主要寄生于病鱼的鳃和皮肤,其他脏器未见虫体。
2.2.1 鳃的病理变化
(1)鳃丝
健康瓦氏黄颡鱼的鳃颜色鲜红,鳃丝干净,无污物附着。显微镜下鳃丝分布整齐,鳃小片粗细均匀,大小正常,呼吸上皮均匀围绕在鳃小片外层(图2a、b)。AB-PAS染色可见鳃丝黏液细胞较少,散在分布于鳃小片和鳃小片基部,以IV红色球状黏液细胞和V蓝色球状黏液细胞为主(图2e、f)。感染后,鳃丝表现出明显的充血、出血症状,鳃丝末端膨大,鳃小片异常弯曲;病变严重时,整个鳃丝坏死,坏死细胞和红细胞游离于鳃小片间,导致鳃小片结构不清。小瓜虫可见于鳃小片基部和游离的鳃丝间(图2c、d)。AB-PAS染色后,鳃丝黏液细胞大量增多,尤其在鳃丝末端和坏死的鳃丝表面。黏液细胞主要为V型、IV型和II型(图2g、h)。
图 2 小瓜虫感染后瓦氏黄颡鱼鳃丝的病理变化注:a) 健康瓦氏黄颡鱼鳃丝,HE;b) 健康瓦氏黄颡鱼鳃小片(→),HE;c) 感染后鳃丝紊乱、鳃小片坏死脱落(*),HE;d) 游离于鳃丝间的小瓜虫(→),HE;e) 健康瓦氏黄颡鱼鳃丝,AB-PAS;f) 健康瓦氏黄颡鱼鳃小片IV型(→)和V型(▲)黏液细胞,AB-PAS;g) 感染后黏液细胞增多,且大量聚集于坏死鳃丝(*)表面,小瓜虫位于鳃小片基部(→),AB-PAS;h) 鳃小片基部小瓜虫(→),AB-PAS。Figure 2. Histopathological change of gill filament of P. vachelli infected by I. multifiliisNote: a) gill filament from healthy P. vachelli, HE; b) tablet of gill from healthy P. vachelli (→), HE; c) gill filament confusion and tablet of gill necrosis (*) from I. multifiliis infected P. vachelli, HE; d) free I. multifiliis (→) between gill filament, HE; e) gill filament from healthy P. vachelli, AB-PAS; f) type IV (→) and type V (▲) cellula mucipara in tablet of gill from healthy P. vachelli, AB-PAS; g) cellula mucipara increasing in the surface of necrotic gill filaments (*), I. multifiliis situated at the base of tablet of gill (→); AB-PAS; h) I. multifiliis situated at the base of tablet of gill (→), AB-PAS.(2)鳃耙
小瓜虫感染后,鳃耙呈现出明显的病理变化。正常鳃耙为表层未角化复层上皮,黏液细胞单层或双层排列于表层,棒状细胞分布于表皮下;味蕾散在分布(图3a、b)。AB-PAS染色观察正常鳃耙显示:鳃耙的黏液细胞以V型蓝色球状为主,间或夹杂IV型红色球状(图3e、f)。感染后,小瓜虫可见于鳃耙的表皮层和表皮下层。鳃耙的表皮完整性受损,黏液细胞大量增多,棒状细胞减少,甚至消失(图3c、d)。AB-PAS染色显示:增生的黏液细胞多为V型和II型黏液细胞,聚集在小瓜虫周围(图3g、h)。
图 3 小瓜虫感染后瓦氏黄颡鱼鳃耙的病理变化注:a) 健康瓦氏黄颡鱼鳃耙,HE;b) 健康瓦氏黄颡鱼鳃耙味蕾(→)和棒状细胞(▲),HE;c) 感染后鳃耙紊乱、小瓜虫寄生于鳃耙内(→),HE;d) 位于鳃耙复层上皮层的小瓜虫(→),HE;e) 健康瓦氏黄颡鱼鳃耙味蕾(→)和棒状细胞(▲),AB-PAS;f) 健康瓦氏黄颡鱼鳃耙VI型(→)和V型黏液细胞(▲),AB-PAS;g) 感染后中间层黏液细胞数量增多(→);h)小瓜虫(→)周围大量V型黏液细胞(▲),AB-PAS。Figure 3. Histopathological change of gill raker of P. vachelli infected by I. multifiliisNote: a) gill raker from healthy P. vachelli, HE; b) taste bud (→) and club cells (▲) in gill raker from healthy P. vachelli, HE; c) gill raker disordered and I. multifiliis situated in gill raker from I. multifiliis infected P. vachelli, HE; d) I. multifiliis (→) in the stratified epithelium of gill raker, HE; e) gill raker from healthy P. vachelli, showing taste bud (→) and club cells (▲), AB-PAS; f) type IV (→) and type V (▲), cellula mucipara in gill raker from healthy P. vachelli, AB-PAS; g) cellula mucipara increasing in the middle layer of gill raker (→), AB-PAS; h) I. multifiliis (→) surrounded by abundant type V cellula mucipara (▲), AB-PAS.(3)鳃弓
正常瓦式黄颡鱼鳃弓被覆复层上皮,鳃弓末端有味蕾分布,表层均匀的分布1层V型黏液细胞(图4a、b、e和f)。小瓜虫可寄生于鳃弓的复层上皮,感染后鳃弓结构紊乱,复层坏死上皮脱落,黏液细胞大量增生,味蕾消失(图4c、d、g和h)。
图 4 小瓜虫感染后瓦氏黄颡鱼鳃弓的病理变化注:a) 健康瓦氏黄颡鱼鳃弓(→),HE;b) 健康瓦氏黄颡鱼鳃弓味蕾(→),HE;c) 感染后鳃弓上皮细胞脱落、小瓜虫寄生于鳃弓上皮内(→),HE;d) 位于鳃弓上皮层的小瓜虫(→),HE;e) 健康瓦氏黄颡鱼鳃弓(→),AB-PAS;f) 健康瓦氏黄颡鱼鳃弓味蕾(→)、VI型(▲)和V型黏液细胞(),AB-PAS;g) 感染后V型粘液细胞数量增多(→),AB-PAS;h) 位于鳃弓上皮层的小瓜虫(→),AB-PAS。 Figure 4. Histopathological change of branchial arch of P. vachelli infected by I. multifiliisNote: a) branchial arch from healthy P. vachelli (→), HE; b) taste bud (→) in branchial arch from healthy P. vachelli, HE; c) branchial arch disordered and I. multifiliis situated in epithelium of branchial arch (→) from I. multifiliis infected P. vachelli, HE; d) I. multifiliis (→) in the epithelium of branchial arch, HE; e) branchial arch from healthy P. vachelli (→), AB-PAS; f) taste bud (→), type IV (▲) and type V () cellula mucipara in branchial arch from healthy P. vachelli, AB-PAS; g) cellula mucipara increasing in branchial arch (→), AB-PAS; h) I. multifiliis (→) situated in branchial arch, AB-PAS. 2.2.2 皮肤和肌肉的病理变化
健康鱼体皮肤由表皮和真皮组成,真皮下为肌肉组织(图5a、e)。表皮的最外层为未角化的复层上皮细胞,中间层为数量不等的棒状细胞和V型黏液细胞等,基底层为单层立方细胞;基底层的下方为真皮的色素细胞层,其下为致密结缔组织(图5b、f)。感染后,虫体多见于表皮的中间层和基底层,虫体周围有扁平细胞包裹,寄生部位皮肤或隆起或溃烂。皮肤隆起时主要表现为:表皮层上皮细胞形状钝圆狭长、游离面出现微小突起;中间层棒状细胞层数增多;基底细胞层数增多,排列紊乱。真皮的致密层疏松,向表皮层隆起,形成“乳头样”结构(图5c)。虫体寄生严重时,皮肤出现溃烂,根据溃烂的深浅,分别表现为:表皮层上皮细胞连续性消失,中间层变薄,棒状细胞破裂溶解,基底细胞坏死溶解(图5d)。AB-PAS染色观察黏液细胞结果显示:感染小瓜虫后,V型黏液细胞数量增加(图5g)。严重时,表皮层、真皮层和色素层消失,骨骼肌裸露,肌纤维坏死溶解(图5h)。健康肌纤维纹理清晰、细胞核位于肌纤维外层(图5i)。感染后,肌间隙增宽,大量炎性细胞浸润,肌细胞颗粒变性(图5j)。AB-PAS染色后,坏死肌纤维呈红色,与正常肌纤维交错排列,形成红白相间的“条纹样”结构(图5k、l)。
图 5 小瓜虫感染后瓦氏黄颡鱼皮肤和肌肉的病理变化注:a) 健康瓦氏黄颡鱼体侧皮肤,外层为表皮(E),内层为真皮(D),皮下为肌肉层(M),HE;b) 健康瓦氏黄颡鱼体侧皮肤,示侧线(*),感觉神经(▲),棒状细胞(→),HE;c) 感染后皮肤隆起,表皮增厚,真皮隆起,小瓜虫寄生于表皮基底层(→),HE;d) 感染后皮肤溃烂,表皮完整性受损,表皮细胞、棒状细胞坏死脱落(*),HE;e) 健康瓦氏黄颡鱼体侧皮肤,V型黏液细胞(→)散在分布于表皮的中间层,AB-PAS;f) 健康瓦氏黄颡鱼体侧皮肤,示V型黏液细胞(→),AB-PAS;g) 感染后小瓜虫寄生于皮肤的表皮层(→),表皮中间层V型黏液细胞数量增多(▲),AB-PAS;h) 感染后小瓜虫(→)寄生部位皮肤破溃,表皮完整性受损(*),肌肉裸露,AB-PAS;i) 健康肌纤维(→),HE;j) 感染后受累肌纤维坏死,溶解,肌间隙炎性细胞浸润(*),HE;k) 健康肌纤维着色浅(→),AB-PAS;l) 感染后受累肌纤维局部坏死,溶解,呈紫红色(→),AB-PAS。Figure 5. Histopathological change of skin and muscle of P. vachelli infected by I. multifiliisNote: a) skin of body side from healthy P. vachelli, epidermis (E), dermis (D), muscle (M), HE; b) skin of body side from healthy P. vachelli, showing lateral line (*), sensory nerve (▲) and club cell (→), HE; c) bulge of infected skin, showing epidermis thickening, dermis swelling, and I. multifiliis (→) situated at base of epidermis, HE; d) skin damage after infection, showing epidermis broken, surface cells and club cell necrosis (*), HE; e) skin of body side from healthy P. vachelli, showing type V cellula mucipara (→) scattered in middle layer of epidermis, AB-PAS; f) type V (→) cellula mucipara in epidermis from healthy P. vachelli, AB-PAS; g) I. multifiliis situated in epidermis (→) and type V cellula mucipara increased in middle layer of epidermis (▲), AB-PAS; h) I. multifiliis (→) situated in skin and broke the integrity of epidermis (*), contributing to the explosion of muscle, AB-PAS; i) healthy myofiber (→), HE; j) infected myofiber showed necrosis, lysis, and inflammatory cells infiltration (*), HE; k) light stained myofiber (→), AB-PAS; l) infected myofiber exhibited necrosis and lysis with purple color (→), AB-PAS.2.2.3 其他内脏器官病理变化
在患病鱼的消化道、肝、脾、肾和心中均未观察到小瓜虫寄生。各组织脏器主要表现为水肿和淤血。其中,胃受影响最小,未见明显病理损伤;肠道主要表现为固有层和粘膜下层水肿;肝脏表现为肝血窦瘀血;肝细胞气球样变,严重时肝细胞破裂溶解;肾脏的肾小管上皮细胞颗粒变性,空泡变性,严重时细胞坏死脱落于管腔;肾小球毛细血管内皮细胞空泡变性,肾小囊狭窄,肾间质细胞排列疏松;心包膜水肿增厚,毛细血管淤血和出血;致密层肌纤维间隙增宽;疏松层肌纤维空泡变性,严重时肌纤维溶解,在肌间隙间可见中性粒细胞浸润;脾脏主要病变为瘀血和出血,网状细胞出现空泡变性。
3. 讨论
3.1 小瓜虫对鳃的影响
鳃由鳃耙、鳃弓和鳃丝三部分组成。本研究观察发现小瓜虫可寄生于鳃弓、鳃耙和鳃丝。寄生在鳃丝的小瓜虫主要引起鳃丝黏液细胞增生,鳃小片呼吸上皮浮离,基部复层上皮细胞增生甚至整个鳃丝坏死,表明鳃的呼吸、渗透以及代谢等调节功能遭到了严重破坏,这与对金鱼[5]、圆口铜鱼[6]和翘嘴鲌[7]的研究结果相符。而寄生于鳃弓的小瓜虫,主要引起鳃弓复层上皮细胞和黏液细胞增生,严重时可破坏鳃弓复层上皮。鳃弓具有味蕾,可甄别食物,感知食物味道,决定食物吞咽[8],因此推测小瓜虫的入侵可能影响了鱼体的食欲,导致鱼体摄食减少,从而引起胃肠道空虚。鳃弓还具有氧传感器和5-羟色胺细胞,可感知氧的浓度,调整鳃丝通气量和血流量[9-10];鳃弓受损后,氧感知能力下降,可能加剧鱼体的血氧交换障碍。OLSEN等[11]研究发现:虹鳟的鳃丝具有免疫功能,鳃丝中CD8+细胞、MHCII细胞、免疫球蛋白IgT和IgM以及补体因子C3等都参与了小瓜虫的免疫。虽然在组织学上,鳃弓的复层上皮中也含有丰富的黏液细胞、淋巴细胞以及嗜酸性细胞,可黏附水中沉淀物和病原[12],但目前尚无证据表明鳃弓具有免疫作用。本研究发现感染小瓜虫后鳃弓中的黏液细胞数量和种类均出现了增加,且聚集于小瓜虫周围,这些黏液细胞与小瓜虫免疫的关系有待进一步研究。
3.2 小瓜虫对皮肤影响
鱼类皮肤可通过先天性免疫和获得性免疫在小瓜虫的感染和免疫中发挥重要作用[13]。陈达丽等[14]观察长吻鮠皮肤内的小瓜虫的寄生部位发现:虫体可寄生于表皮、真皮甚至肌层;而本研究观察患病瓦氏黄颡鱼的皮肤小瓜虫寄生部位发现:虫体仅寄生于表皮,而在真皮层和肌层未见虫体。这可能与感染的时期有关,也可能与鱼的品种相关。虽然感染后虫体的位置略有差异,但皮肤的病理变化基本相似,表现为:表皮完整性受损、上层扁平细胞变为立方形或长方形,游离面出现微小突起。
棒状细胞和黏液细胞均主要位于表皮的中间层和外层,组织学上可通过AB-PAS进行区别,黏液细胞为PAS阳性,而棒状细胞为PAS阴性。本研究中,感染小瓜虫后,瓦氏黄颡鱼的棒状细胞出现明显的增生。棒状细胞在遇到危险或遭受捕食者袭击时可发出一种化学物质,具有警示作用。同时,棒状细胞也是一种免疫细胞,保护表皮免受病原和寄生虫的感染[15]。本研究中,感染小瓜虫后棒状细胞的大量增生可能与警示或免疫应激有关。
鱼类黏液细胞是上皮细胞中普遍存在的单细胞腺体。皮肤中的黏液细胞具有免疫、机械屏障、化学屏障和润滑等作用。黄颡鱼皮肤中具有5种类型的黏液细胞,分别为:I型蓝色棒状、II型紫色杯状、III型蓝色梭状、IV红色球状和V型蓝色球状。其中,体侧黏液细胞以III、IV和V型为主[16]。本研究发现:感染小瓜虫后,黏液细胞以V型蓝色球状为主,并伴有少量IV红色球状。AB中含有带正电荷的分子可将酸性物质染为蓝色,因此推测V型杯状细胞中主要为酸性黏多糖;而PAS为强氧化剂,可将含糖物质氧化成醛,醛与Schiff试剂中的亚硫酸品红结合,生成红色,推测IV型黏液细胞中主要含有中性黏多糖。酸性黏液提取物可有效防止病原入侵,为体表提供免疫功能[17]。小瓜虫感染后,黏液细胞的酸性黏多糖是否具有抵御小瓜虫和周围环境中的有害微生物入侵的功能有待进一步研究。
3.3 小瓜虫对瓦氏黄颡鱼的致病机制
本研究中,小瓜虫虽然局限寄生于皮肤和鳃,未见于其他组织脏器,但造成的损伤是全身性的。鳃是鱼体交换气体、排出含氮排泄物、调节酸碱和渗透压的重要器官[18];皮肤具有调节渗透压、维持机体稳态和免疫等功能。小瓜虫对瓦氏黄颡鱼的鳃和皮肤造成的严重的损伤,造成了机体缺氧和体液大量流失,环境中的水进入体内,引起肝和肾组织肿胀,进一步引起血液循环障碍、心脏和脾脏出血,最终导致全身内环境改变而引起鱼体死亡。
4. 结论
小瓜虫主要寄生于瓦氏黄颡鱼的皮肤和鳃,造成皮肤和鳃的严重损伤,导致机体内环境失衡引起全身各组织器官损伤,造成鱼体死亡。
-
表 1 中央种子目植物和拟南芥SOD基因家族成员鉴定结果
Table 1 Identification of SOD gene family members in Centrospermae plants and Arabidopsis thaliana
物种和基因
species and gene科
family基因位置
genomic locationmRNA登录号
mRNA accession numberArabidopsis thaliana FSD1 十字花科 Cruciferae NC_003075.7:12886501-12884649 NM_179109.3 Arabidopsis thaliana FSD2 NC_003076.8:7850624-7852241 NM_122237.4 Arabidopsis thaliana FSD3 NC_003076.8:20775635-20773357 NM_001344920.1 Arabidopsis thaliana FSD3A NC_003075.7:271879-271487 NM_001160723.1 Arabidopsis thaliana CSD1 NC_003070.9:2827700-2828807 NM_100757.4 Arabidopsis thaliana CSD2 NC_003071.7:12014548-12016119 NM_128379.4 Arabidopsis thaliana CSD3 NC_003076.8:5987221-5988706 NM_121815.3 Arabidopsis thaliana MSD1 NC_003074.8:3418015-3419581 NM_111929.4 Arabidopsis thaliana MSD2 NC_003074.8:20895625-20894155 NM_115493.4 Gymnocarpos przewalskii FSD1 石竹科 Caryophyllaceae * * Gymnocarpos przewalskii FSD2 * * Gymnocarpos przewalskii CSD4 * * Gymnocarpos przewalskii CSD1 * * Gymnocarpos przewalskii CSD3 * * Gymnocarpos przewalskii MSD1 * * Gymnocarpos przewalskii MSD2 * * Heliosperma pusillum FSD1 JAIUZE010018124.1:11847-15799 * Heliosperma pusillum FSD2 JAIUZE010000002.1:140516-136928 * Heliosperma pusillum CSD4 JAIUZE010067092.1:3384-5050 * Heliosperma pusillum CSD1 JAIUZE010073259.1:285813-288035 * Heliosperma pusillum CSD1A JAIUZE010070098.1:178071-179888 * Heliosperma pusillum MSD1 JAIUZE010008127.1:79107-76112 * Silene uniflora FSD1 JAGPOY010018870.1:5491-2120 * Silene uniflora FSD2 JAGPOY010002330.1:7452-11037 * Silene uniflora CSD4 JAGPOY010003172.1:23432-25100 * Silene uniflora CSD1 JAGPOY010001333.1:40498-38310 * Silene uniflora CSD1A JAGPOY010011427.1:964-0 * Silene uniflora MSD1 JAGPOY010014232.1:7069-2430 * Silene uniflora MSD2 JAGPOY010011731.1:4295-262 * Beta vulgaris FSD1 藜科 Chenopodiaceae NC_025816.2:6234788-6228677 * Beta vulgaris FSD2 NC_025818.2:40177518-40172416 * Beta vulgaris CSD4 NC_025816.2:4914930-4919486 * Beta vulgaris CSD1 NC_025815.2:15147045-15150139 XM_048643263.1 Beta vulgaris CSD2 NC_025820.2:8642105-8643606 XM_010690943.3 Beta vulgaris CSD3 NW_017567370.1:79949-75243 XM_048641553.1 Beta vulgaris MSD1 NC_025813.2:38245103-38248668 XM_010672327.3 Spinacia oleracea FSD1 NW_018931542.1:472076-476008 * Spinacia oleracea FSD2 NW_018931921.1:9755-14589 * Spinacia oleracea CSD4 NW_018931441.1:557804-561552 * Spinacia oleracea CSD1 NW_018933314.1:21108-24616 XM_021980495.1 Spinacia oleracea CSD2 NW_018931532.1:503914-502172 XM_021992599.1 Spinacia oleracea CSD3 NW_018931535.1:211206-208540 XM_021992686.1 Spinacia oleracea MSD1 NW_018932804.1:356909-364539 XM_022007118.1 Chenopodium pallidicaule FSD1 MATR01001300.1:30440-27605 * Chenopodium pallidicaule FSD2 MATR01000265.1:180148-176382 * Chenopodium pallidicaule CSD1 MATR01000264.1:257344-260369 * Chenopodium pallidicaule CSD4 MATR01000261.1:320327-316450 * Chenopodium pallidicaule CSD2 MATR01000024.1:784224-782104 * Chenopodium pallidicaule CSD3 MATR01001549.1:14852-21045 * Chenopodium pallidicaule MSD1 MATR01000148.1:624885-628670 * 注:“*”代表本研究鉴定的基因。
Note: “*” represents the genes identified in this study.表 2 裸果木SOD蛋白质理化性质分析
Table 2 Analysis of physical and chemical properties of Gymnocarpos przewalskii SOD protein
基因/多肽链
genes/polypetide chain氨基酸数量
number of amino acids分子量
molecular weight等电点
isoelectric point平均亲水性
average hydrophilicity不稳定性系数
instability index非同义替换率/同义替换率
Ka/KsCSD1 152 15109.74 5.47 −0.10 20.91 0.10 CSD3 157 15970.96 7.19 −0.13 17.39 0.12 CSD4 306 32884.70 6.06 −0.10 36.54 0.54 FSD1 269 30257.10 5.82 −0.35 37.58 0.13 FSD2 255 29251.63 8.94 −0.28 45.02 0.15 MSD1 230 25758.29 6.75 −0.40 44.83 0.08 MSD2 228 25614.22 6.75 −0.37 42.50 0.05 表 3 裸果木和海滨蝇子草FSD1和CSD1蛋白质理化性质分析
Table 3 Physicochemical properties of FSD1 and CSD1 proteins in G. przewalskii and Silene uniflora
物种/多肽链
species/polypetide chain氨基酸数量
number of amino acids分子量
molecular weight等电点
isoelectric point平均亲水性
average hydrophilicity不稳定性系数
instability indexS. uniflora FSD1 269 30047.07 6.39 −0.276 29.82 G. przewalskii FSD1 269 30257.10 5.82 −0.350 37.58 S. uniflora CSD1 152 15198.85 5.71 −0.186 18.47 G. przewalskii CSD1 152 15109.74 5.47 −0.100 20.91 -
[1] LIU J H, FU C C, LI G J, et al. ROS homeostasis and plant salt tolerance: plant nanobiotechnology updates[J]. Sustainability, 2021, 13(6): 3552. DOI: 10.3390/su13063552.
[2] ZHANG X, ZHANG L T, CHEN Y Y, et al. Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley[J]. Plant Growth Regulation, 2021, 94: 49. DOI: 10.1007/s10725-021-00695-8.
[3] BOGOUTDINOVA L R, LAZAREVA E M, CHABAN I A, et al. Salt stress-induced structural changes are mitigated in transgenic tomato plants over-expressing superoxide dismutase[J]. Biology, 2020, 9(9): 297. DOI: 10.3390/biology9090297.
[4] MITTLER R, ZANDALINAS S I, FICHMAN Y, et al. Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 663. DOI: 10.1038/s41580-022-00499-2.
[5] NADARAJAH K K. ROS homeostasis in abiotic stress tolerance in plants[J]. International Journal of Mechanical Sciences, 2020, 21(15): 5208. DOI: 10.3390/ijms21155208.
[6] RAJPUT V D, HARISH, RUPESH K S, et al. Recent developments in enzymatic antioxidant defense mechanism in plants with special reference to abiotic stress[J]. Biology, 2021, 10(4): 267. DOI: 10.3390/biology10040267.
[7] RAZA A, SALEHI H, RAHMAN M A, et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants[J]. Frontiers in Plant Science, 2022, 13: 961872. DOI: 10.3389/fpls.2022.96187.
[8] DEL RÍO L A, CORPAS F J, LÓPEZ-HUERTAS E, et al. Plant superoxide dismutases: function under abiotic stress conditions[M]. Germany: Springer International Publishing, 2018.
[9] YANG X Y, LU M Q, WANG Y F, et al. Response mechanism of plants to drought stress[J]. Horticulturae, 2021, 7(3): 50. DOI: 10.3390/horticulturae7030050.
[10] MA N L, LAH W A C, KADIR N A, et al. Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections[J]. PLoS One, 2018, 13(2): e0192732. DOI: 10.1371/journal.pone.0192732.
[11] XU H S, GUO S M, ZHU L, et al. Growth, physiological and transcriptomic analysis of the perennial ryegrass Lolium perenne in response to saline stress[J]. Royal Society, 2022, 7(7): 200637. DOI: 10.1098/rsos.200637.
[12] 马书荣, 李韫, 石美玉, 等. 盐碱胁迫对蒙古柳无性系生理特性的影响[J]. 分子植物育种, 2021, 19(3): 1004. DOI: 10.13271/j.mpb.019.001004. [13] 王立龙, 王亮, 张丽芳, 等. 不同生境下濒危植物裸果木种群结构及动态特征[J]. 植物生态学报, 2015, 39(10): 980. DOI: 10.17521/cjpe.2015.0095. [14] 黄海霞, 杨琦琦, 崔鹏, 等. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197. DOI: 10.11686/cyxb2020057. [15] 黄海霞, 连转红, 王亮, 等. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应[J]. 干旱区研究, 2020, 37(1): 227. DOI: 10.13866/j.azr.2020.01.26. [16] 李娟. 珍稀濒危植物裸果木群落物种多样性及其形态解剖学研究[D]. 太原: 山西师范大学, 2012. [17] 连转红, 杨海莉, 吴芳明, 等. NaCl或PEG胁迫对裸果木种子萌发的影响[J]. 中国水土保持科学, 2017, 15(6): 89. DOI: 10.16843/j.sswc.2017.06.011. [18] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [19] GRABHERR G M, HAAS B J, YASSOUR M, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data[J]. Nature Biotechnology, 2011, 29(7): 644. DOI: 10.1038/nbt.1883.
[20] CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10(1): 421. DOI: 10.1186/1471-2105-10-421.
[21] LOZANO R, HAMBLIN M T, PROCHNIK S, et al. Identification and distribution of the NBS-LRR gene family in the cassava genome[J]. BMC Genomics, 2015, 16(1): 360. DOI: 10.1186/s12864-015-1554-9.
[22] GASCUEL O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Systematic Biology, 2010, 59(3): 307. DOI: 10.1093/sysbio/syq010.
[23] DARRIBA D, TABOADA G L, DOALLO R, et al. jModelTest2: more models, new heuristics and parallel computing[J]. Nature Methods, 2012, 9(8): 772. DOI: 10.1038/nmeth.2109.
[24] HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296. DOI: 10.1093/bioinformatics/btu817.
[25] BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(1): 39. DOI: 10.1093/nar/gkv41.
[26] IVANOVA Z, SABLOK G, DASKALOVA E, et al. Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response[J]. Frontiers in Plant Science, 2017, 8: 204. DOI: 10.3389/fpls.2017.00204.
[27] WEBB B, SALI A. Comparative protein structure modeling using MODELLER[J]. Current Protocols in Protein Science, 2016, 86(1): 2.9.1. DOI: 10.1002/cpbi.3.
[28] TORSTEN S, KOPP J, NICOLAS G, et al. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucleic Acids Research, 2003, 31(13): 3381. DOI: 10.1093/nar/gkg520.
[29] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33. DOI: 10.1016/0263-7855(96)00018-5.
[30] 朱雪天, 黄勇, 卢有, 等. 绿豆SOD基因的生物信息学分析及盐胁迫下的表达分析[J]. 分子植物育种, 2023, 21(15): 4886. DOI: 10.13271/j.mpb.021.004886. [31] HU X X, HAO C Y, CHENG Z M, et al. Genome-wide identification, characterization, and expression analysis of the grapevine superoxide dismutase (SOD) family[J]. International Journal of Genomics, 2019, 2019: 7350414. DOI: 10.1155/2019/7350414.
[32] 郭栋, 张艳阳, 杜媚, 等. 油菜超氧化物歧化酶基因家族生物信息学分析[J]. 分子植物育种, 2020, 18(2): 367. DOI: 10.13271/j.mpb.018.000367. [33] FENG X, LAI Z X, LIN Y L, et al. Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group)[J]. BMC Genomics, 2015, 16: 823. DOI: 10.1186/s12864-015-2046-7.
[34] NAHIDA A. Activities of antioxidant enzymes in mesophyll and bundle sheath cell chloroplasts of maize plants (Zea mays L.) exposed to salt stress[J]. Bulletin of Science and Practice, 2020, 6(11): 47. DOI: 10.33619/2414-2948/60/05.
[35] HAO S H, WANG Y R, YAN Y X, et al. A review on plant responses to salt stress and their mechanisms of salt resistance[J]. Horticulturae, 2021, 7(6): 132. DOI: 10.3390/horticulturae7060132.
[36] MANOJ G G, GUPTAB K, DONDE R, et al. Characterization of haplotypes and single nucleotide polymorphisms associated with Gn1a for high grain number formation in rice plant[J]. Genomics, 2022, 112(3): 2647. DOI: 10.1016/j.ygeno.2020.02.016.
[37] PREMPEH R N A, MANU-ADUENING J A, QUAIN M D, et al. Assessment of genetic diversity among cassava landraces using single nucleotide polymorphic markers[J]. African Journal of Biotechnology, 2020, 19(6): 383. DOI: 10.5897/AJB2018.16420.
[38] PAPADOPULOS A S T, HELMSTETTER A J, OSBORNE O G, et al. Rapid parallel adaptation to anthropogenic heavy metal pollution[J]. Molecular Biology and Evolution, 2021, 38(9): 3724. DOI: 10.1093/molbev/msab141.
-
期刊类型引用(3)
1. 卢军浩,李兰兰,权金强,赵桂研,孙军,蒋常平,刘哲. 小瓜虫对虹鳟组织病理变化及TLR信号通路基因表达影响. 农业生物技术学报. 2022(04): 739-750 . 百度学术
2. 李丽,章琳俐,Nemat O.KEYHANI,辛清武,缪中纬,朱志明,邱君志,郑嫩珠. 黑番鸭就巢性状差异miRNAs筛选及功能预测. 农业生物技术学报. 2022(04): 726-738 . 百度学术
3. 刘炜,周国勤,裴雪莹,茆健强,张雷鸣,石晓兰. 杂交黄颡鱼“黄优1号”春季管理技术. 水产养殖. 2022(04): 59-61 . 百度学术
其他类型引用(2)