• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

高格斯台罕乌拉国家级自然保护区针阔混交林的大型真菌多样性

白慧, 姜海燕, 于凤强, 张建华, 狄佳麟, 吴云菊, 党海龙, 王志平

白慧, 姜海燕, 于凤强, 等. 高格斯台罕乌拉国家级自然保护区针阔混交林的大型真菌多样性[J]. 云南农业大学学报(自然科学), 2025, 40(1): 1−11. DOI: 10.12101/j.issn.1004-390X(n).202208052
引用本文: 白慧, 姜海燕, 于凤强, 等. 高格斯台罕乌拉国家级自然保护区针阔混交林的大型真菌多样性[J]. 云南农业大学学报(自然科学), 2025, 40(1): 1−11. DOI: 10.12101/j.issn.1004-390X(n).202208052
BAI Hui, JIANG Haiyan, YU Fengqiang, et al. Diversity of Macrofungi in Mixed Coniferous and Broad-leaved Forests of Gaogesitaihanwula National Nature Reserve[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202208052
Citation: BAI Hui, JIANG Haiyan, YU Fengqiang, et al. Diversity of Macrofungi in Mixed Coniferous and Broad-leaved Forests of Gaogesitaihanwula National Nature Reserve[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science). DOI: 10.12101/j.issn.1004-390X(n).202208052

高格斯台罕乌拉国家级自然保护区针阔混交林的大型真菌多样性

基金项目: 阿鲁科尔沁旗生物多样性专项调查与保护规划服务项目(AQJYZX-2018TP047-FW);满洲里市草原有害生物及林业湿地外来有害生物普查采购项目(MZL-QY-22015);内蒙古大学生创新创业项目(202210129029);内蒙古自治区2022年科学技术协会科普作品资助项目(RZ2200002291)。
详细信息
    作者简介:

    白慧(1996—),女,内蒙古呼和浩特人,在读硕士研究生,主要从事森林病理、菌物分类等研究。E-mail:18047137732@163.com

    通信作者:

    姜海燕(1975—),女,内蒙古巴彦淖尔人,博士,教授,主要从事森林病理、菌物分类等研究。E-mail:jhydlm@126.com

  • 中图分类号: S718

摘要:
目的 

研究高格斯台罕乌拉国家级自然保护区针阔混交林内大型真菌的多样性及其与植被类型的关系。

方法 

在3种不同针阔混交林内设置9个样方(每种林型设3个样地),通过形态分类学和分子系统发育学分析大型真菌的物种组成与多样性,利用冗余分析和主成分分析探讨大型真菌与林分结构及树种组成的关系。

结果 

共采集并鉴定大型真菌31科52属86种,包括9个优势科和13个优势属。属的分布类型以世界分布为主,北温带分布次之。在兴安落叶松(Larix gmelinii)+白桦(Betula platyphylla)+蒙古栎(Quercus mongolica)林分中,大型真菌的科丰富度和多样性指数最高,分布最均匀。兴安落叶松、蒙古栎和白桦是影响大型真菌分布和组成的主要树种,郁闭度、树高和海拔是影响其分布的重要因素。植被类型丰富度高的林分中,大型真菌的科丰富度和多样性指数最高;大型真菌多样性主要受湿度、草本盖度、郁闭度等林内结构因素影响,并与共生树种密切相关。此外,不同科分布与郁闭度、海拔、草本盖度、林内湿度、乔木胸径、灌木冠幅、乔木树高显著相关。

结论 

大型真菌的物种组成和多样性受不同植被类型林分结构和树种组成的显著影响,并与特定树种存在共生关系。

 

Diversity of Macrofungi in Mixed Coniferous and Broad-leaved Forests of Gaogesitaihanwula National Nature Reserve

Abstract:
Purpose 

To investigate the diversity of macrofungi in mixed coniferous and broad-leaved forests in the Gaogesitaihanwula National Nature Reserve and its relationship with vegetation types.

Methods 

Nine quadrats were established across three different forest types (three plots per forest type). The species composition and diversity of macrofungi were analyzed by morphological taxonomy and molecular phylogenetic techniques. Redundancy analysis and principal component analysis were conducted to explore the relationship among macrofungi, stand structure, and tree species composition.

Results 

A total of 86 species of macrofungi were collected and identified, belonging to 31 families and 52 genera, including nine dominant families and 13 dominant genera. The genus distribution pattern was primarily cosmopolitan, followed by the northern temperate distribution. The Larix gmelinii+Betula platyphylla+Quercus mongolica forest type exhibited the highest richness and diversity indices, as well as the most uniform distribution of macrofungi. L. gmelinii, Q. mongolica, and B. platyphylla were identified as the key tree species influencing the distribution and composition of macrofungi, while canopy density, tree height, and altitude were found to be the most significant factors. Forest stands with higher vegetation richness demonstrated greater richness and diversity indices for macrofungi. The diversity of macrofungi was strongly influenced by internal structural factors such as humidity, herbaceous coverage, and canopy density, and it was closely associated with the distribution of symbiotic tree species. Furthermore, the distribution of different fungal families was significantly correlated with canopy density, altitude, herbaceous coverage, indoor humidity, tree diameter at breast height, shrub crown width, and tree height.

Conclusion 

The composition and diversity of macrofungi were significantly influenced by the stand structure and tree species composition of different vegetation types, with specific symbiotic relationships observed between macrofungi and certain tree species.

 

参考文献

  • [1] 图力古尔, 王耀, 范宇光. 长白山针叶林带大型真菌多样性[J]. 东北林业大学学报, 2010, 38(11): 97. DOI: 10.3969/j.issn.1000-5382.2010.11.028.
    [2] 图力古尔, 陈今朝, 王耀, 等. 长白山阔叶红松林大型真菌多样性[J]. 生态学报, 2010, 30(17): 4549.
    [3]

    LÓPEZ-QUINTERO C A, STRAATSMA G, FRANCO-MOLANO A E, et al. Erratum to: macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance[J]. Biodiversity and Conservation, 2012, 21(9): 2245. DOI: 10.1007/s10531-012-0294-2.

    [4]

    SHUHADA S N, SALIM S, NOBILLY F, et al. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings[J]. Ecology and Evolution, 2017, 7(18): 7187. DOI: 10.1002/ece3.3273.

    [5]

    ANGELINI P, COMPAGNO R, ARCANGELI A, et al. Macrofungal diversity and ecology in two Mediterranean forest ecosystems[J]. Giornale Botanico Italiano, 2016, 150(3): 540. DOI: 10.1080/11263504.2014.987844.

    [6] 王术荣, 王德利, 王琦, 等. 西藏东南高寒森林大型真菌多样性与植被及环境的关系[J]. 菌物学报, 2016, 35(3): 279. DOI: 10.13346/j.mycosystema.140250.
    [7]

    GÓMEZ-HERNÁNDEZ G M, WILLIAMS-LINERA W G. Diversity of macromycetes determined by tree species, vegetation structure, and microenvironment in tropical cloud forests in Veracruz, Mexico[J]. Botany, 2011, 89(3): 203. DOI: 10.1139/b11-007.

    [8] 竺永金, 潘启强, 陈健鑫, 等. 云南大围山国家级自然保护区大型真菌资源调查研究[J]. 云南农业大学学报(自然科学), 2022, 37(4): 611. DOI: 10.12101/j.issn.1004-390X(n).202103054.
    [9] 巴图, 乌云高娃, 图力古尔. 内蒙古高格斯台罕乌拉国家级自然保护区大型真菌区系调查[J]. 吉林农业大学学报, 2005, 27(1): 29. DOI: 10.13327/j.jjlau.2005.01.008.
    [10] 张旭州. 高格斯台罕乌拉国家级自然保护区植物多样性研究[D]. 呼和浩特: 内蒙古农业大学, 2022.
    [11] 方精云, 郭柯, 王国宏, 等. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报, 2020, 44(2): 96. DOI: 10.17521/cjpe.2019.0259.
    [12] 卯晓岚. 中国大型真菌图鉴[M]. 郑州: 河南科学技术出版社, 1999.
    [13] 刘铁志. 赛罕乌拉自然保护区菌物资源图鉴[M]. 赤峰: 内蒙古科学技术出版社, 2019.
    [14] 潘保华. 山西大型真菌野生资源图鉴[M]. 北京: 科学技术文献出版社, 2018.
    [15] 刘旭东. 中国野生大型真菌彩色图鉴[M]. 北京: 中国林业出版社, 2002.
    [16] 史东明. 内蒙古沙日温都自然保护区大型真菌资源初探[D]. 呼和浩特: 内蒙古农业大学, 2021.
    [17] 任燕. 沙地云杉内生真菌形态学与分子学分类鉴定[D]. 呼和浩特: 内蒙古农业大学, 2018.
    [18]

    YAN J Q, BAU T. New and newly recorded species of Psathyrella (Psathyrellaceae, Agaricales) from northeast China[J]. Phytotaxa, 2017, 321(1): 139. DOI: 10.11646/phytotaxa.321.1.7.

    [19] 马克平, 刘玉明. 生物群落多样性的测度方法Ⅰ: α多样性的测度方法(下)[J]. 生物多样性, 1994, 2(4): 231. DOI: 10.3321/j.issn:1005-0094.1994.04.009.
    [20] 马克平. 生物群落多样性的测度方法Ⅰ: α多样性的测度方法(上)[J]. 生物多样性, 1994, 2(3): 162. DOI: 10.3321/j.issn:1005-0094.1994.03.007.
    [21] 邓芳. 内蒙古高格斯台罕乌拉国家级自然保护区森林植被现状及分类[J]. 内蒙古林业调查设计, 2005, 28(4): 30. DOI: 10.3969/j.issn.1006-6993.2005.04.012.
    [22] 图力古尔, 李玉. 大青沟自然保护区大型真菌区系多样性的研究[J]. 生物多样性, 2000, 8(1): 73. DOI: 10.3321/j.issn:1005-0094.2000.01.010.
    [23] 程国辉. 黑龙江省胜山国家级自然保护区大型真菌多样性研究[D]. 长春: 吉林农业大学, 2018.
    [24] 柴新义, 盛硕, 于士军, 等. 牯牛降自然保护区大型真菌资源组成及分布[J]. 西北林学院学报, 2018, 33(1): 193. DOI: 10.3969/j.issn.1001-7461.2018.01.32.
    [25] 毛玉明, 吴初平, 黄玉洁, 等. 钱塘江源头水源林林分结构与功能分析[J]. 浙江林业科技, 2015, 35(5): 1. DOI: 10.3969/j.issn.1001-3776.2015.05.001.
    [26] 温慧. 大、小兴安岭地区植物及真菌资源特征及其多样性研究[D]. 哈尔滨: 东北林业大学, 2021.
    [27] 周光林. 缙云山: 自然保护区大型真菌多样性研究[D]. 重庆: 西南大学, 2012.
    [28]

    CHIARA L, HANS H B, ALESSANDRO C, et al. Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation[J]. Forest Ecology and Management, 2019, 432: 707. DOI: 10.1016/j.foreco.2018.09.057.

  • 图(4)  /  表(7)
    计量
    • 文章访问数:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 通信作者:  姜海燕 jhydlm@126.com
    • 收稿日期:  2022-08-26
    • 修回日期:  2024-11-04
    • 网络首发日期:  2025-03-04

    目录

      /

      返回文章
      返回