鸡白痢沙门氏菌感染对雏鸡脾脏miRNA表达谱的影响
Effects of Salmonella Pullorum Infection on miRNA Expression Profiles in Spleen of Chicks
-
Keywords:
- Salmonella Pullorum /
- SPF chicks /
- spleen /
- differentially expressed miRNA /
- immunity
-
在有光照、温度、氧气等条件都适宜的情况下,具有生理活力的种子能否萌发的决定因素是水分[1]。植物种子必须吸收足够的水分才能启动一系列酶的活动,由相对静止转为生理活动状态,呼吸作用开始增强,种子贮藏物质开始分解并转化,启动萌动状态;但不同植物种子吸水量不同,其吸水变化规律也不同。一般认为,含蛋白质较多的豆科种子吸水较多,而禾草类种子吸水较少。种子萌发时吸水量的差异是由种子所含成分不同引起的[2-3]。
植物种子在不同吸水环境下表现出不同的吸水速率及吸水能力[4]。SHAFAEI等[5]认为种子吸水能力其主要取决于浸种时间和水温,且水温提高加速水分扩散速度,导致种子吸水加快;RANJBARI等[6]发现随着浸种时间的延长,种子逐步吸收水分并最终趋向饱和。而对于种子吸水时间与种子吸水动态关系存在不同回归模型,如KASHANINEJAD等[7]发现水稻种子吸水与时间的最佳模型为Page模型;SHAFAEI等[8]发现鹰嘴豆种子吸水最佳模型为二项式函数;还有学者提出以经验模型应用最合适,即用试验得到的数据进行数理统计分析、按相关性最大归纳出该过程各参数和变量之间的数学关系式[9-11]。
对于不同作物种子萌发过程中的吸水规律已有较多报道[12-15]。然而,针对高羊茅种子的吸水规律及与形态特征相关性研究,国内外鲜见报道。本研究选择不同品种高羊茅种子进行控温下的吸水试验,并根据吸水时间和吸水率确定出种子的吸水模型,进一步探讨种子吸水量、吸水率和种子形态学特征之间的相关性,对高羊茅品种的选择具有一定的参考价值,为高羊茅种子发芽的水分管理提供理论基础。
1. 材料与方法
1.1 供试材料
选取市场常见的7种高羊茅品种进行种子萌发吸水动态研究,即猎狗5号、黄金岛、勋章、宇宙星、家园、领域Ⅱ和交战Ⅱ。
1.2 试验方法
1.2.1 种子处理
从7个高羊茅品种中选取籽粒大小基本一致的种子4 000粒,均匀摊铺在40 cm×30 cm的不锈钢盘中,置于25 m3密闭紫外线灭菌室消毒杀菌35 min。将每个品种的4 000粒种子在无菌操作台上分成4等份,即4个重复,每份分别称干重。称重后置入已用75%酒精消毒的有盖培养皿中,同时称取培养皿和1 000粒种子的总重量。
1.2.2 种子形态测定
采用游标卡尺测定高羊茅种子长度、厚度和宽度(最宽处),每个品种测量50粒,求平均值。种子千粒重采用电子天平称重法,利用亚甲蓝吸附法测定种子千粒表面积,排水法测定[16]种子千粒体积。
1.2.3 吸水特性测定
每个品种随机选取1 000粒种子备用,分别取200粒种子用纱布包裹,4个重复,放入恒温水浴锅中进行浸泡试验,调控温度为30 ℃。试验期间的前6 h,每隔2 h取出种子;6 h后每隔3 h取出,用吸水纸将种子表皮的水分吸干、称重,直至42 h。然后计算不同高羊茅品种的吸水率[17-18]。
吸水率=(Wh−W0)/W0×100%,
式中,Wh为种子湿重,W0为种子干重,h为吸水时间。
1.3 数据分析
对7个品种高羊茅种子的不同时间吸水率进行统计分析,并对不同高羊茅品种的吸水率与吸水时间的关系进行曲线估计。数据分析采用SPSS 13.0软件进行,用Excel作图。
2. 结果与分析
2.1 高羊茅种子吸水特性的时间变化
由图1可知:不同品种高羊茅种子平均吸水率随吸水时间的延长而增加,种子吸水率从0增加到149.29%~153.70%,各品种的最终吸水量约为种子干重的1.5倍。参试高羊茅种子的吸水量都在39 h基本趋于饱和(水温30 ℃),同一时间各品种吸水率不存在差异(P>0.05)。高羊茅种子吸水率随吸水时间的延长而增加,呈现快—慢规律,并逐步趋于饱和,表现为第一阶段吸水速度较快(0~9 h),第二阶段吸水速度减慢(10~42 h)。综合各品种数值,吸水率增加值以9 h为最大(增加幅度为14.88%)。
2.2 高羊茅种子吸水特性的曲线估计
由吸水时间和吸水特性的散点图,不能确定何种函数模型更接近样本数据,故选择一元线性、对数函数、二次函数、三次函数、复合函数、幂函数、S形曲线、生长函数、指数函数、Logistic函数10种曲线进行拟合,最终确定具有R2统计量最大的三次函数模型作为最佳曲线回归模型。由表1可知:参试的高羊茅种子吸水率与吸水时间关系都是为三次函数,且二者显著相关,回归模型方程为高羊茅种子吸水量、吸水率提供数学预测,也为高羊茅种子发芽的水分管理提供理论基础。
表 1 高羊茅种子吸水率(y)随吸水时间(x)变化的曲线估计 (三次函数)Table 1. Curve estimate of seed water absorption rate (y) – time ( x) in F. arundinacea (cubic function)品种varieties 模型概括model summary 回归模型方程regression model R2 F值 F value 显著性 Sig. 猎狗5号Hound V 0.936 43.538 0.000 y=0.007x3−0.421x2+10.356x+16.483 黄金岛Golden Island 0.987 233.038 0.000 y=0.007x3−0.397x2+8.749x+15.089 勋章Medal 0.977 130.023 0.000 y=0.005x3−0.273x2+6.792x+15.407 宇宙星Cosmos 0.994 484.708 0.000 y=0.005x3−0.371x2+10.759x+22.821 家园Home 0.980 148.795 0.000 y=0.004x3−0.272x2+6.584x+8.266 领域Ⅱ FieldⅡ 0.971 100.154 0.000 y=0.008x3−0.503x2+10.875x+12.180 交战Ⅱ Belligerent II 0.975 115.473 0.000 y=0.009x3−0.578x2+12.791x+15.697 2.3 高羊茅种子形态特征与吸水动态相关性
由表2可知:参试7个高羊茅品种中,猎狗、黄金岛、领域Ⅱ的千粒重显著高于其他品种(P<0.05);粒长、粒宽、千粒表面积和千粒体积最大的均为勋章;粒厚之间无显著差异(P>0.05)。
种子形态特征与种子吸水量、吸水率的相关性分析结果(表3、4)表明:高羊茅种子千粒重、粒长、粒宽、粒厚、千粒表面积和千粒体积与0~42 h内的吸水量呈极显著正相关,相关性大小顺序为千粒重>粒宽>千粒体积>千粒表面积>粒长>粒厚,这表明种子吸水量可以用上述指标来预测,以千粒重和粒宽为最好。高羊茅种子的粒宽、粒厚与0~42 h内的吸水率呈极显著负相关,相关性大小顺序为粒厚>粒宽,这表明高羊茅种子吸水率可以用粒厚和粒宽来预测,而其他形态特征与吸水率无显著相关。
表 2 不同高羊茅品种的种子形态特征Table 2. The seed morphological characters in F. arundinacea品种
varieties千粒重/g
1 000-seed weight粒长/mm
seed length粒宽/mm
seed width粒厚/mm
seed thickness千粒表面积/cm2
1 000-seed surface area千粒体积/cm3
1 000-seed volume猎狗Hound 2.47±0.12 a 4.96±0.16 b 1.41±0.10 b 1.0±0.06 a 54.10±0.89 d 2.48±0.28 c 黄金岛Golden Island 2.52±0.15 a 5.81±0.62 a 1.40±0.12 b 0.96±0.02 a 68.54±0.79 b 3.06±0.06 b 勋章Medal 2.19±0.11 c 6.11±0.51 a 1.69±0.09 a 0.99±0.03 a 84.23±0.13 a 4.72±0.18 a 宇宙星Cosmos 2.32±0.09 b 6.05±0.57 a 1.64±0.08 a 1.02±0.05 a 75.43±0.59 ab 4.22±0.08 a 家园Home 2.18±0.10 c 5.22±0.58 b 1.41±0.13 b 0.94±0.06 a 60.14±1.29 c 2.61±0.07 c 领域Ⅱ FieldⅡ 2.51±0.18 a 5.28±0.47 b 1.35±0.11 b 0.97±0.10 a 65.32±1.03 c 2.66±0.21 c 交战Ⅱ Belligerent II 2.41±0.14 b 6.27±0.41 a 1.48±0.10 b 1.17±0.12 a 70.21±0.69 b 4.15±0.58 a 注:同列不同字母表示0.05水平的显著性(P<0.05)。
Note: Different letters in the same column indicate the 0.05 level of significance (P<0.05).表 3 高羊茅种子形态特征与种子吸水量的相关性Table 3. Correlation between seed morphological characters and water absorption amounts of F. arundinacea处理时间/h
treatment time千粒重/g
1 000-seed weight粒长/mm
seed length粒宽/mm
seed width粒厚/mm
seed thickness千粒表面积/cm2
1 000-seed surface area千粒体积/cm3
1 000-seed volume2 0.899** 0.592** 0.695** 0.615** 0.631** 0.616** 4 0.886** 0.630** 0.667** 0.576* 0.644** 0.632** 6 0.892** 0.661** 0.678** 0.594** 0.670** 0.659** 9 0.892** 0.676** 0.682** 0.602** 0.681** 0.669** 12 0.884** 0.688** 0.682** 0.600** 0.687** 0.673** 15 0.883** 0.712** 0.691** 0.602** 0.705** 0.689** 18 0.877** 0.713** 0.692** 0.596** 0.705** 0.690** 21 0.875** 0.713** 0.689** 0.592** 0.703** 0.686** 24 0.885** 0.716** 0.697** 0.593** 0.708** 0.693** 27 0.915** 0.711** 0.712** 0.622** 0.710** 0.695** 30 0.932** 0.721** 0.726** 0.647** 0.723** 0.706** 33 0.937** 0.748** 0.744** 0.654** 0.750** 0.735** 36 0.935** 0.757** 0.739** 0.646** 0.754** 0.739** 39 0.932** 0.759 0.730** 0.642** 0.757** 0.742** 42 0.930** 0.761 0.929** 0.639** 0.759** 0.744** 注:*和**分别表示0.05和0.01水平的显著性;下同。
Note: * and **indicates the significance of the 0.05 and 0.01 levels respectively; the same as below.表 4 高羊茅草坪种子形态特征与种子吸水率的相关性Table 4. Correlation between seed morphological characters and water absorption ratio of F. arundinacea处理时间/h
treatment time千粒重/g
1 000-seed weight粒长/mm
seed length粒宽/mm
seed width粒厚/mm
seed thickness千粒表面积/cm2
1 000-seed surface area千粒体积/cm3
1 000-seed volume2 −0.345 −0.478* −0.478* −0.562* −0.470* −0.426 4 −0.380 −0.447 −0.513* −0.593** −0.457 −0.410 6 −0.407 −0.448 −0.529* −0.594** −0.460 −0.412 9 −0.435 −0.457 −0.546* −0.600** −0.471* −0.423 12 −0.438 −0.445 −0.546* −0.603** −0.465 −0.419 15 −0.439 −0.428 −0.543* −0.603** −0.454 −0.409 18 −0.440 −0.426 −0.541* −0.604** −0.451 −0.407 21 −0.437 −0.422 −0.539* −0.603** −0.449 −0.405 24 −0.444 −0.432 −0.543* −0.604** −0.455 −0.409 27 −0.421 −0.433 −0.531* −0.580* −0.450 −0.405 30 −0.404 −0.422 −0.518* −0.561* −0.436 −0.391 33 −0.420 −0.419 −0.523* −0.570* −0.433 −0.385 36 −0.407 −0.402 −0.516* −0.566* −0.419 −0.371 39 −0.421 −0.431 −0.523* −0.569* −0.427 −0.368 42 −0.427 −0.412 −0.537* −0.572* −0.413 −0.369 3. 讨论
植物种子萌发过程中对水分的吸收量是长期适应环境的过程,探寻种子的吸水特性可以更好地了解其萌发特性。高羊茅种子的吸水率随吸水时间的延长而增加,各品种的高羊茅种子在39 h吸水基本趋于饱和(水温30 ℃),达到种子干重的1.5倍左右,说明参试高羊茅品种的种子吸水进程是一致的,不存在品种的区别,这与SHAFAEI等[5]研究不同大豆品种达到饱和吸水所用相同时间的结论是一致的。因此,39 h可作为高羊茅种子萌发吸水的关键时间。同一时间各品种高羊茅种子吸水率不存在差异(P>0.05),吸水率增加值随时间的延长先升后降,表现为9 h前升高和9 h后下降,因此,9 h可作为高羊茅种子吸水阶段的分界点,前9 h为种子快速吸水阶段,表现为较强吸水能力,平均每小时增加6.2%,9 h后高羊茅种子吸水强度降低,吸胀能力减弱,主要进行生理生化反应。小麦、高粱、水稻、花生等种子吸水的规律[19-22]也有相似的结论。此外,SHAFAEI等[5]认为后期种子吸水变慢其原因是后期种子内产生固体抑制物质有关,其具体的原因需要从种子微观结构及生理生化等进行进一步的研究。
植物种子萌发吸水动态曲线常为典型“S”曲线,即吸水特性体现出“快—慢—快”规律[22-23]。但近年来的许多研究结果表明:植物种子萌发动态吸水拟合曲线是多样的,如鹰嘴豆种子动态吸水为二次函数[8]、玉米种子吸水特性为对数函数[24]等。本研究结果表明:高羊茅种子的动态吸水回归模型为三次函数,R2达到显著相关性(P<0.05),其拟合函数模型可以为高羊茅种子吸水机理研究奠定理论基础。高羊茅草坪草种子形态特征与0~42 h内的吸水量都呈极显著正相关,以千粒重和粒宽的相关性最大,高羊茅草坪草种子0~42 h吸水率与粒厚和粒宽呈显著负相关,其中与粒厚的相关性最大,这些结论与张冠初等[25]研究花生种子形态与种子吸水量、吸水率关系的结论一致。因此,在播种生产上,粒宽、千粒重大的高羊茅品种适当多灌溉,确保种子发芽水分的需要。当然,浸泡水温对高羊茅种子吸水影响及吸水量对种子发芽影响等问题有待于进一步研究。
-
表 1 miRNA RT-qPCR引物
Table 1 Primers of miRNA RT-qPCR
miRNA 引物名称
primer name引物序列 (5′→3′)
primer sequencegga-let-7j-5p RTj5p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACTAT j5p-F GCGCGTGAGGTAGTAGGTTGT R1 AGTGCAGGGTCCGAGGTATT gga-miR-125b-3p RT125 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGGTCCCA 125-F CCGCGACAAGTCAGGCTC R1 AGTGCAGGGTCCGAGGTATT gga-miR-130b-3p RT130 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGCCC 130-F CGCGCAGTGCAATAATGAAA R1 AGTGCAGGGTCCGAGGTATT gga-let-7b RT7b GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAACCAC 7b-F GCGCGTGAGGTAGTAGGTTGT R1 AGTGCAGGGTCCGAGGTATT gga-miR-451 RT451 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAACTC 451-F CGCGAAACCGTTACCATTACT R1 AGTGCAGGGTCCGAGGTATT gga-miR-19b-3p RT19b GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCAGTT 19b-F CAGCGTGTGTGCAAATCCAT R1 AGTGCAGGGTCCGAGGTATT gga-miR-153-3p RT153 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACTT 153-F CCAGCGTGTTGCATAGTCAC R1 AGTGCAGGGTCCGAGGTATT gga-miR-21-3p RT21 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGACAGC 21-F CGCGCAACAACAGTCGGTAG R2 ACTGGTGTCGTGGAGTCGGC gga-miR-147 RT147 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCAGAA 147-F GCGGTGTGCGGAAATGC R2 ACTGGTGTCGTGGAGTCGGC 5S rRNA 5S-F CCATACCACCCTGGAAACGC 5S-R TACTAACCGAGCCCGACCCT 表 2 有效数据统计结果
Table 2 Statistical results of valid data
样品
samples原始序列
raw reads筛选序列
selected reads低质量序列
junk reads过滤后序列
clean readsRfam数据库序列
reads of Rfam database信使RNA
mRNA重复序列
repeats reads有效序列
valid reads有效序列占比/%
rate of valid readsC1 9380231 4988969 9889 4381373 844861 229212 321743 3373552 35.96 C2 11884024 2433385 12240 9438399 852781 158504 387259 8483589 71.39 C3 12181462 2560633 12531 9608298 962446 177670 390585 8525520 69.99 T1 22529885 12411658 10214 10108013 4452492 235137 2844813 5573614 24.74 T2 11378691 5185418 6500 6186773 2121851 148841 1354775 4006009 35.21 T3 11433648 5298273 23510 6111865 1255664 140035 575972 4790964 41.90 -
[1] BARROW P A, FREITAS N O C. Pullorum disease and fowl typhoid-new thoughts on old diseases: a review[J]. Avian Pathology, 2011, 40(1): 1. DOI: 10.1080/03079457.2010.542575.
[2] SHIVAPRASAD H L. Fowl typhoid and pullorum disease[J]. Revue Scientifique et Technique, 2000, 19(2): 405. DOI: 10.20506/rst.19.2.1222.
[3] TADESSE S, ASHENAFI H, ASCHALEW Z. Seroprevalence study of newcastle disease in local chickens in central Ethiopia[J]. International Journal of Applied Research in Veterinary Medicine, 2005, 3(1): 25.
[4] TEFERI M, NEJASH A. Epidemiology and economic importance of Pullorum disease in poultry: a review[J]. Global Veterinaria, 2016, 17(3): 228. DOI: 10.5829/idosi.gv.2016.17.03.103123.
[5] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281. DOI: 10.1016/s0092-8674(04)00045-5.
[6] HE L, HANNON G J. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522. DOI: 10.1038/nrg1379.
[7] SCHNITGER A K, MACHOVA A, MUELLER R U, et al. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response[J]. PLoS One, 2011, 6(11): e27435. DOI: 10.1371/journal.pone.0027435.
[8] WU G X, QI Y K, LIU X Y, et al. Cecal microRNAome response to Salmonella enterica serovar enteritidis infection in white leghorn layer[J]. BMC Genomics, 2017, 18(1): 77. DOI: 10.1186/s12864-016-3413-8.
[9] SUN W W, LIU R R, LI P, et al. Chicken gga-miR-1306-5p targets Tollip and plays an important role in host response against Salmonella enteritidis infection[J]. Journal of Animal Science and Biotechnology, 2019, 10: 59. DOI: 10.1186/s40104-019-0365-2.
[10] SMITH K G, HUNT J L. On the use of spleen mass as a measure of avian immune system strength[J]. Oecologia, 2004, 138(1): 28. DOI: 10.1007/s00442-003-1409-y.
[11] LI X, SHAHID M Q, WU J W, et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. International Journal of Molecular Sciences, 2016, 17(4): 499. DOI: 10.3390/ijms17040499.
[12] AKIRA S. Toll receptor families: structure and function[J]. Seminars in Immunology, 2004, 16: 1. DOI: 10.1016/j.smim.2003.10.001.
[13] CHEN Y, LIU W, XU H X, et al. gga-miR-19b-3p inhibits newcastle disease virus replication by suppressing inflammatory response via targeting RNF11 and ZMYND11[J]. Frontiers in Microbiology, 2019, 10: 2006. DOI: 10.3389/fmicb.2019.02006.
[14] ZHAO Y B, ZOU M Y, SUN Y F, et al. gga-miR-21 modulates Mycoplasma gallisepticum (HS strain)-induced inflammation via targeting MAP3K1 and activating MAPKs and NF-κB pathways[J]. Veterinary Microbiology, 2019, 237: 108407. DOI: 10.1016/j.vetmic.2019.108407.
[15] YUAN B, ZOU M Y, ZHAO Y B, et al. Up-regulation of miR-130b-3p activates the PTEN/PI3K/AKT/NF-κB pathway to defense against Mycoplasma gallisepticum (HS strain) infection of chicken[J]. International Journal of Molecular Sciences, 2018, 19(8): 2172. DOI: 10.3390/ijms19082172.
[16] GUO Q, ZHU X X, WEI R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. Journal of Cellular Physiology, 2021, 236(3): 2008. DOI: 10.1002/jcp.29987.
[17] ZHAO Y B, ZHANG K, ZOU M Y, et al. gga-miR-451 negatively regulates Mycoplasma gallisepticum (HS strain)-induced inflammatory cytokine production via targeting YWHAZ[J]. International Journal of Molecular Sciences, 2018, 19(4): 1191. DOI: 10.3390/ijms19041191.
[18] LIN L, HU K B. MiR-147: functions and implications in inflammation and diseases[J]. Microrna, 2021, 10(2): 91. DOI: 10.2174/2211536610666210707113605.
[19] ZUO X S, WANG L, BAO Y Q, et al. The ESX-1 virulence factors downregulate miR-147-3p in Mycobacterium marinum-infected macrophages[J]. Infection and Immunity, 2020, 88(6): e00088. DOI: 10.1128/IAI.00088-20.
[20] VLACIL A K, VOLLMEISTER E, BERTRAMS W, et al. Identification of microRNAs involved in NOD-dependent induction of pro-inflammatory genes in pulmonary endothelial cells[J]. PLoS One, 2020, 15(4): e0228764. DOI: 10.1371/journal.pone.0228764.
[21] ESWARAPPA S M, NEGI V D, CHAKRABORTY S, et al. Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes[J]. Infection and Immunity, 2010, 78(1): 68. DOI: 10.1128/IAI.00668-09.
[22] HASHIM S, MUKHERJEE K, RAJE M, et al. Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes[J]. The Journal of Biological Chemistry, 2000, 275(21): 16281. DOI: 10.1074/jbc.275.21.16281.
[23] GARVIS S G, BEUZÓN C R, HOLDEN D W. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages[J]. Cellular Microbiology, 2001, 3(11): 731. DOI: 10.1046/j.1462-5822.2001.00153.x.
[24] LAHIRI A, ESWARAPPA S M, DAS P, et al. Altering the balance between pathogen containing vacuoles and lysosomes: a lesson from Salmonella[J]. Virulence, 2010, 1(4): 325. DOI: 10.4161/viru.1.4.12361.
[25] LI Q C, WANG X, XIA J, et al. Salmonella-containing vacuole development in avian cells and characteristic of cigR in Salmonella enterica serovar Pullorum replication within macrophages[J]. Veterinary Microbiology, 2018, 223: 65. DOI: 10.1016/j.vetmic.2018.07.013.
-
期刊类型引用(6)
1. 朱佳鹏,罗超,李洋,李芹梅,赵秋燕,汪琼,黄美娟,黄海泉. 铜胁迫对滇水金凤种子萌发及幼苗生长的影响. 生物学杂志. 2023(01): 64-68 . 百度学术
2. 贾燕伟,祁娟,徐长林,赛宁刚. 青藏高原区披碱草属种子功能性状研究. 中国草地学报. 2023(04): 42-50 . 百度学术
3. 刘亚西,周杨,李杨,刘金平,王丹. 模拟水分胁迫对多年生黑麦草种子萌发和生理调控的影响. 草业科学. 2022(07): 1383-1390 . 百度学术
4. 龚定芳,孙杰,赵萍萍,胡忆. 外源8'-炔基脱落酸对高羊茅抗旱性的影响. 中国农业文摘-农业工程. 2021(03): 43-46+96 . 百度学术
5. 江生泉,薛正帅,梁建军,张易,程建峰. 5种禾本科草坪草种子的吸水特性. 河北科技师范学院学报. 2019(01): 26-32 . 百度学术
6. 江生泉,薛正帅,梁建军,姜自红,汤士勇. 黑麦草种子萌发特性研究. 长江大学学报(自然科学版). 2019(08): 81-84+9 . 百度学术
其他类型引用(1)