• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

苜蓿、小冠花和百脉根花粉管引导和胚珠败育研究

王晓娟, 黄利春, 张树振

王晓娟, 黄利春, 张树振. 苜蓿、小冠花和百脉根花粉管引导和胚珠败育研究[J]. 云南农业大学学报(自然科学), 2021, 36(1): 114-123. DOI: 10.12101/j.issn.1004-390X(n).202008060
引用本文: 王晓娟, 黄利春, 张树振. 苜蓿、小冠花和百脉根花粉管引导和胚珠败育研究[J]. 云南农业大学学报(自然科学), 2021, 36(1): 114-123. DOI: 10.12101/j.issn.1004-390X(n).202008060
Xiaojuan WANG, Lichun HUANG, Shuzhen ZHANG. Study on the Pollen Tube Introduction and Ovule Abortion after Cross-pollination in Medicago sativa, Coronilla varia and Lotus cornioulatous[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(1): 114-123. DOI: 10.12101/j.issn.1004-390X(n).202008060
Citation: Xiaojuan WANG, Lichun HUANG, Shuzhen ZHANG. Study on the Pollen Tube Introduction and Ovule Abortion after Cross-pollination in Medicago sativa, Coronilla varia and Lotus cornioulatous[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(1): 114-123. DOI: 10.12101/j.issn.1004-390X(n).202008060

苜蓿、小冠花和百脉根花粉管引导和胚珠败育研究

基金项目: 上海市自然科学基金(18ZR1425400)
详细信息
    作者简介:

    王晓娟(1972—),女,甘肃静宁人,博士,教授,主要从事植物生态学和传粉生物学研究。E-mail:wangxj@sstm.org.cn

摘要:
目的豆科牧草苜蓿、小冠花和百脉根异花授粉,胚珠败育现象显著,种子实际产量远低于理论产量,但有关其授粉后的花粉管引导和受精后胚胎发育的基础数据缺乏。
方法采用人工授粉方法,对3种豆科牧草花粉管引导和胚胎发育进行荧光显微观察,并结合田间数据进行胚珠败育统计分析。
结果3种牧草柱头授粉最佳时期为花药开裂阶段,柱头角质层是其花粉管穿入花柱的机械屏障;苜蓿授粉2 h后花粉萌发,8 h后花粉管生长并到达胚珠,24 h后75%的胚珠处有花粉管到达;小冠花和百脉根花粉管萌发生长到达胚珠的时间比苜蓿快,授粉4 h后即观察到花粉管生长到达胚珠,8 h后2种牧草96%和100%的胚珠处均有花粉管分布。进一步的荚果结实观察发现:苜蓿、小冠花和百脉根授粉后胚珠败育严重,平均败育率分别为87.67%、78.00%和81.33%,荚果内败育胚珠的位置具有随机性。以上结果表明:授粉后不同牧草花粉萌发和花粉管生长速率明显不同,尽管小冠花和百脉根的花柱比苜蓿长,其花粉管生长引导速度比苜蓿快;从到达胚珠的花粉管数量来看,3种牧草花粉数量均可满足其胚珠受精需要。
结论3种豆科牧草胚珠败育并非由于受精前的花粉萌发和花粉管引导限制,而是和受精后的胚胎发育受阻有关。

 

Study on the Pollen Tube Introduction and Ovule Abortion after Cross-pollination in Medicago sativa, Coronilla varia and Lotus cornioulatous

Abstract:
PurposeLeguminous forages Medicago sativa, Coronilla varia and Lotus cornioulatous are typical allogamy. Ovule abortion reduced the seeds numbers per pod, and actual seed production is much lower than their potential seed production. But fundamental data related to pollen tube introduction and embryo development after pollination are still lack.
MethodUsing controlled pollination method, pollen tube introduction and embryo development were observed in M. sativa, C. varia and L. cornioulatous using fluorescence microscope. And random abortive position of seed in one pod was also collected and analyzed in field trial.
ResultThe stigmas of these three leguminous forages were receptive at the stage of dehiscence, and cuticles of stigma were mechanical barrier as pollen tubes penetrating the style. In M. sativa, pollen grains germinated 2 h after pollination and pollen tube reached the ovary after 8 h. The potential rate of ovule fertilization was up to 75% and remained unchanged 24 h after pollination. In C. varia and L. cornioulatous, pollen tubes reached the ovule 4 h after pollination, and the potential rate of ovule fertilization reached 96% and 100% 8 h after pollination, respectively. Even then, the percentage of seed abortion in M. sativa, C. varia and L. cornioulatous were still higher as 87.67%, 78.00% and 81.33%, respectively. Pollen tube growth and introduction were different in three leguminous forages. Although style lengths of C. varia and L. cornioulatous were longer than that of M. sativa, pollen tubes grew quicker in these two legumes. In M. sativa, C. varia and L. cornioulatous respectively, and random abortive position of seed in one pod was also observed. These results indicated that number of pollen tubes arrived in embryo sac in M. sativa, C. varia and L. cornioulatous could meet the demand of double fertilization.
ConclusionThe numbers of pollen grains loaded on the stigma as well as pollen tube introduction were not the limited factors for seed set, and ovule abortion could be due to embryo development restriction after fertilization in these leguminous forages.

 

  • 朱顶红褪绿环斑病毒(Hippeastrum chlorotic ringspot virus,HCRV)是泛布尼亚病毒科(Peribunyaviridae)番茄斑萎病毒属(Tospovirus)病毒,2013年在中国云南被首次发现并报道[1],本课题组首次报道了朱顶红褪绿环斑病毒的全基因组序列[2-3]。朱顶红褪绿环斑病毒能系统侵染一点红、番茄、莴苣、旱金莲和豇豆等经济作物,主要症状为同心环纹、叶片畸形、局部褪绿和坏死[4],对农业生产造成了严重的威胁。HCRV为三分子基因组,分别是L RNA、M RNA和S RNA。L RNA仅有1个开放阅读框,正向编码RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase,RdRp);M RNA正向编码非结构蛋白(non-structural protein of M RNA,NSm),互补链编码糖蛋白前体(glycoproteins,Gn/Gc);S RNA正向编码非结构蛋白NSs (non-structural protein of S RNA,NSs),互补链编码核壳体蛋白 (nucleocapsid protein,N)[5],N蛋白序列保守程度较高[6],因此通常被用于进行Tospovirus属病毒的分类检测和鉴定[7],N蛋白也可能与病毒粒子装配有关[8]。本研究通过RT-PCR鉴定出葱莲、文殊兰、喜林芋和酢浆草感染HCRV的4份样品。为研究核壳体蛋白序列特征,通过RT-PCR、克隆和测序得到样品完整的HCRV S RNA序列,利用ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/)获得其N蛋白序列并进行分析,为HCRV的后续研究提供基础。

    2016年在云南省昆明市主要园林景区进行了调查,采集到八角金盘(Fatsia japonica)、葱莲(Zephyranthes candida)、酢浆草(Oxalis corniculata)、旱金莲(Tropaeolum majus)、蝴蝶兰(Phalaenopsis aphrodite)、文殊兰(Crinum asiaticum)、喜林芋(Philodendron schott)和鸢尾(Iris tectorum)等疑似感染番茄斑萎病毒属病毒样品(图1),主要表现为褪绿、坏死斑和皱缩等症状,将采集回来的样品用RT-PCR进行鉴定。

    图  1  疑似感染番茄斑萎病毒属病毒样品
    注:a) 葱莲;b) 喜林芋;c) 酢浆草;d) 八角金盘。
    Figure  1.  Samples suspected infection with Tospovirus virus
    Note: a) Zephyranthes candida; b) Philodendron schott; c) Oxalis corniculata; d) Fatsia japonica.

    采用去除多糖多酚的TransZol Plant (全式金生物技术有限公司,北京)试剂盒提取RNA,以RNA为模板,采用PrimeScriptTMⅡ1st strand cDNA Synthesis Kit (宝生物技术有限公司,大连)进行反转录合成cDNA。

    利用Primer Premier 6.0软件,以GenBank中公布的HCRV S RNA序列(序列号:JX833564.1)设计引物,S RNA扩增引物为:F:5′-AGAGCAATCGAGGTATAAACAAATAATCATACAC-3′;R:5′-AGAGCAATCGAGGTATAAAACATAAATTCTGAAC-3′。50 μL PCR反应体系:cDNA 1 μL,上下游引物各1 μL,FastPfu 1 μL,Buffer 10 μL,dNTP 4 μL,ddH2O 32 μL。PCR反应条件:95 ℃ 1 min;95 ℃ 20 s,50 ℃ 20 s,72 ℃ 1.5 min,40个循环;72 ℃ 5 min;4 ℃保存。PCR反应产物用于1.2%的琼脂糖凝胶电泳检测。将获得的PCR产物进行纯化以及加A反应。将已纯化的PCR产物连接在pEASY-T1载体上,将连接产物导入T1感受态细胞中,经过菌液PCR鉴定出阳性重组子并送到公司进行测序。

    通过ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/)获得4个HCRV分离物的N蛋白序列,利用DNAMAN 8.0与分离自云南省蜘蛛兰上的HLS1-2 N蛋白(登录号:AFX74694)进行序列比对分析;利用MEGA 6.06软件对NCBI数据库中已公布的分离自云南、广东、广西和福建地区蜘蛛兰上的HCRV的N蛋白以及本研究获得的4个寄主的N蛋白进行系统进化分析。

    通过RT-PCR技术鉴定出葱莲、文殊兰、喜林芋和酢浆草4份感染HCRV的样品并扩增出HCRV S RNA序列,电泳检测条带大小约为2 700 bp (图2)。

    图  2  HCRV S RNA扩增结果
    注:M. Marker;1. 酢浆草;2. 葱莲;3. 文殊兰;4. 喜林芋。
    Figure  2.  Amplification of HCRV S RNA
    Note: M. Marker; 1. O. corniculata; 2. Z. candida; 3. C. asiaticum; 4. P. schott.

    本研究获得的葱莲YN-ZCH、文殊兰YN-CA、喜林芋YN-PS和酢浆草YN-OC的N蛋白,通过DNAMAN 8.0与首个公布的HLS1-2 N蛋白进行序列比对,一致性达到99.34%。YN-ZCH存在6个突变位点,YN-CA存在5个突变位点,YN-PS存在4个突变位点,YN-OC存在6个突变位点(表1)。

    表  1  氨基酸突变位点
    Table  1.  Amino acid mutation sites
    病毒株系 virus strains氨基酸位点 amino acid site
    2 9 50 82 113 118 178 241 249
    HCRV-HLS1-2 S A N A N Q I E V
    HCRV-YN-ZCH T V N V S Q V E A
    HCRV-YN-CA T V N V N Q V G V
    HCRV-YN-PS T V N V N Q V E V
    HCRV-YN-OC T V S V N R V E V
    下载: 导出CSV 
    | 显示表格

    利用MEGA 6.06软件对NCBI数据库中已公布的HCRV的N蛋白以及本研究获得的4个寄主的N蛋白构建系统发育树,建树方法选择邻接法(neighbor-joining,NJ)。结果显示:本研究获得的4个HCRV分离物的N蛋白与分离自云南省的HCRV N蛋白聚为1支,来自广东、广西和福建地区的聚为1支(图3)。

    图  3  HCRV N蛋白氨基酸序列系统进化树
    Figure  3.  Phylogenetic tree of HCRV N protein amino acid sequence

    云南省丰富的植物资源和复杂的气候以及丰富的传播介体种类为Tospovirus病毒的发生和流行提供了条件,该属病毒在云南的发生呈逐年上升趋势[9]。自2013年首次在云南省发现HCRV至今,国内外对其研究较少,目前已知寄主包括蜘蛛兰、烟草、番茄、君子兰[10]和葱莲[11]等,仍有许多寄主尚未被发现。本研究鉴定出葱莲、文殊兰、喜林芋和酢浆草4个感染HCRV样品,其中文殊兰、喜林芋和酢浆草是首次报道的HCRV寄主。研究结果表明:4个HCRV分离物的N蛋白与NCBI首次公布的HLS1-2 N蛋白有较高的同源性,从系统发育分析可知不同株系的分离物聚类现象与寄主无明显关联,推测可能环境因子对病毒进化的影响强于寄主的影响。

    本研究通过采集疑似感染番茄斑萎病毒属病毒的样本,应用症状学和分子生物学方法鉴定出了葱莲、文殊兰、喜林芋和酢浆草 4 个感染 HCRV 样品,对 4个寄主植物 S RNA 序列中 N 蛋白进行序列比对和系统进化分析,结果表明 4 个HCRV 分离物 N 蛋白与 NCBI 公布的 HLS1-2 N 蛋白有较高的同源性,HCRV 病毒的地理分布相关性强于寄主相关性。研究结果为 HCRV 的进化研究提供基础,也为进一步探究番茄斑萎病毒属病毒的扩散和进化策略提供参考。

  • 图  1   紫花苜蓿(a)、多变小冠花(b)和百脉根(c)的花

    Figure  1.   Florets of M. sativa (a), C. varia (b) and L. cornioulatous (c)

    图  2   苜蓿异花授粉后2~48 h花粉管的生长和引导

    注:a)~b)授粉2 h,柱头上的花粉(a)和花柱基部(b);c)~e)授粉4 h,花粉在柱头萌发(c),少量花粉管进入花柱(d),尚未到达胚珠(e);f)~h)授粉8 h,大量花粉在柱头萌发(f),穿过花柱的花粉管(g)和到达胚珠的花粉管(h);i)授粉12 h,大量花粉管生长至胚珠位置;j)~k)授粉24 h,花粉管继续引导生长(j)直至珠孔位置(k);l)授粉48 h,花粉管进入胚囊。

    Figure  2.   Growth and guidance of pollen tubes in M. sativa 2-48 h after cross pollination

    Note: a)-b) 2 h after pollination, pollens on the stigma (a) and style (b); c)-e) 4 h after pollination, few pollens germinated on the stigma (c), pollen tubes appeared in the style (d) but not at the ovule (e); f)-h) 8 h after pollination, lots of pollens germinated on the stigma (f), pollen tubes through style (g) arrived at the ovules (h); i) 12 h after pollination, more pollen tubes arrived at the ovules; j)-k) 24 h after pollination, pollen tube growth (j) and guidance to the micropyle (k); l) 48 h after pollination, pollen tube entered into the embryo sac.

    图  3   小冠花异花授粉后2~48 h花粉管的生长和引导

    注:a)~b)授粉2 h,柱头上花粉尚未萌发(a)和花柱(b);c)~d)授粉4 h,花柱基部少量花粉管(c)和到达胚珠的花粉管(d);e)~g)授粉8 h,柱头上花粉萌发和花粉管生长(e),穿过花柱基部到达胚珠的花粉管(f),花粉管向胚珠珠孔端的生长和引导(g);h)~i)授粉12和24 h的胚珠;j)~l)授粉48 h,花柱道(j)、胚珠附近(k)的花粉管和花粉管进入胚囊(l)。

    Figure  3.   Growth and guidance of pollen tubes in C. varia 2-48 h after cross pollination

    Note: a)-b) 2 h after pollination, pollens not yet germinated on the stigma (a) and the style (b); c)-d) 4 h after pollination, pollen tubes appeared in the style (c) and few arrived at the ovule (d); e)-g) 8 h after pollination, pollens germinated on the stigma (e), pollen tubes through the style, arrived at the ovules (f) and guidance to the micropyle (g); h)-i) the ovules pollinated after 12 and 24 h; j)-l) 48 h after pollination, pollen tubes in the style (j) , around the ovules (k) and entered into the embryo sac (l).

    图  4   百脉根的异花授粉后2~48 h花粉管生长和引导

    注:a)~b)授粉2 h,柱头上尚未萌发的花粉(a)和胚珠(b);c)~d)授粉4 h,柱头上萌发花粉(c)和少量花粉管向花柱道生长(d);e)~f)授粉8 h,花粉管向花柱基部生长(e)和少量花粉管到达胚珠位置(f);g)~h)授粉12 h,大量花粉管向胚珠方向生长(g)和花粉管向珠孔端的引导(h);i)~k)授粉24 h,花粉管向胚珠珠孔处的引导生长;l)授粉48 h,花粉管进入胚囊。

    Figure  4.   Growth and guidance of pollen tubes in L. cornioulatous 2-48 h after cross pollination

    Note: a)-b) 2 h after pollination, pollens not yet germinated on the stigma (a) and the ovule (b); c)-d) 4 h after pollination, pollens germinated on the stigma (c) and few pollen tubes appeared in the style (d); e)-f) 8 h after pollination, pollen tubes went through the style (e) and few arrived at the ovule (f); g)-h) 12 h after pollination, lots of pollen tubes towards the ovule (g) and guided to the micropyles (h); i)-k) 24 h after pollination, guidance of pollen tube to ovules and then to the micropyles; l) 48 h after pollination, pollen tube entered into the embryo sac.

    表  1   3种豆科牧草的柱头可授性比较

    Table  1   Comparisons of stigma receptivity in three leguminous forages

    豆科牧草
    leguminous forages
    柱头可授性 stigma receptivity柱头角质层
    cuticle of stigma
    阶段 1
    stage 1
    阶段 2
    stage 2
    阶段 3
    stage 3
    紫花苜蓿
    M. sativa
    ×
    多变小冠花
    C. varia
    × ×
    百脉根
    L. cornioulatous
    ×
    下载: 导出CSV

    表  2   3种豆科牧草不同授粉时间胚珠受精率

    Table  2   Ovule fertilization rate after cross pollination in three leguminous forages %

    授粉时间/h
    time
    苜蓿
    M. sativa
    小冠花
    C. varia
    百脉根
    L. cornioulatous
    488.97±8.41 a89.81±4.85 a
    817.42±6.86 a96.43±3.57 b95.38±1.56 b
    1240.28±8.33 b97.73±3.94 b99.39±1.22 c
    2464.24±11.47 bcd97.92±3.61 b99.09±1.82 c
    4870.69±7.82 cd100.00±0.00 b100.00±0.00 c
    9676.40±4.45 d100.00±0.00 b100.00±0.00 c
    注:不同小写字母表示差异显著(P<0.05);下同。
    Note: Different small letters indicate significant difference at 0.05 level (P<0.05); the same as below.
    下载: 导出CSV

    表  3   3种豆科牧草胚珠败育位置及其败育率

    Table  3   Position of ovule abortion and ovule abortion rate in three leguminous forages %

    败育位置
    position of ovule abortion
    苜蓿
    M. sativa
    小冠花
    C. varia
    百脉根
    L. cornioulatous
    荚果上部 upper part of pod 94±2.58 a 82±3.65 a 76±9.09 a
    荚果中部 middle part of pod 88±5.16 a 74±4.76 a 86±5.03 a
    荚果下部 lower part of pod 81±8.22 a 78±7.39 a 82±7.02 a
    下载: 导出CSV
  • [1] 张爱勤, 谭敦炎, 朱进忠. 苜蓿传粉特性及其制约种子产量形成的因分析[J]. 草业科学, 2005, 22(11): 40. DOI: 10.3969/j.issn.1001-0629.2005.11.009.
    [2]

    BECKER T, VOSS N, DURKA W. Pollen limitation and inbreeding depression in an ‘oldrare’ bumble bee-pollinated grassland herb[J]. Plant Biology, 2011, 13(6): 857. DOI: 10.1111/j.1438-8677.2011.00452.x.

    [3]

    RUDALL P J, BATEMAN R M. Developmental bases for key innovations in the seed-plant microgametophyte[J]. Trends in Plant Science, 2007, 12: 317. DOI: 10.1016/J.TPLANTS.2007.06.004.

    [4]

    LORENZETTI F. Achieving potential herbage seed yields in species of temperate reginons[C]//BAKER M J. Proceedings of the 17th International Grassland Congress. Wellington, New Zealand, 1993.

    [5] 李晓霞, 金樑, 王晓娟. 几个紫花苜蓿亚(变)种花粉和胚珠遗传变异分析[J]. 中国农业科学, 2009, 42(6): 1911. DOI: 10.3864/j.issn.0578-1752.2009.06.005.
    [6]

    BOS M M, VEDDELER D, BOGDANSKI A K, et al. Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination[J]. Ecological Applications, 2007, 17(6): 1841. DOI: 10.1890/06-1763.1.

    [7]

    AYRE D J, WHELLAN R J. Factors controlling fruit set in hermaphroditic plants: studies with the Australian Proteaceae[J]. Trends in Ecology & Evolution, 1989, 4(9): 267. DOI: 10.1016/0169-5347(89)90197-3.

    [8]

    STEPHENSON A G. Flower and fruit abortion: proximate causes and ultimate functions[J]. Annual Review of Ecology and Systematics, 1981, 12: 253. DOI: 10.1146/annurev.es.12.110181.001345.

    [9]

    BURD M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set[J]. The Botanical Review, 1994, 60(1): 83. DOI: 10.1007/BF02856594.

    [10]

    DUAN Q H, LIU M C J, KITA D, et al. FERONIA controls pectin- and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579: 561. DOI: 10.1038/s41586-020-2106-2.

    [11]

    XIONG H, ZOU F, YUAN D, et al. Comparison of self- and cross-pollination in pollen tube growth, early ovule development and fruit set of Camellia grijsii[J]. International Journal of Agriculture and Biology, 2019, 21(4): 819. DOI: 10.17957/IJAB/15.0960.

    [12]

    SHAO F X, WANG S, LIU Z M, et al. Pollination, fertilization, and embryo development in Southern China fresh-eating jujube[J]. HortScience, 2020, 55(8): 1315. DOI: 10.21273/HORTSCI15144-20.

    [13] 刘红平, 李晓霞, 王晓娟. 紫花苜蓿的传粉昆虫种类及其访花行为[J]. 生态学杂志, 2008, 27(5): 780. DOI: 10.13292/j.1000-4890.2008.0173.
    [14]

    WANG X J, LIU H P, HUANG L C, et al. Biodiversity of wild alfalfa pollinators and their temporal foraging characters in Hexi Corridor, Northwest China[J]. Entomologica Fennica, 2012, 23: 4. DOI: 10.33338/ef.84561.

    [15] 黄利春, 金樑, 李晶, 等. 蝶形花亚科植物花部适应机制与传粉系统[J]. 生态学报, 2014, 34(19): 5360. DOI: 10.5846/stxb201301180120.
    [16] 张静文, 金樑, 邓志刚, 等. 花粉管生长和极性引导的孢子体和配子体控制[J]. 西北植物学报, 2012, 32(8): 1712. DOI: 10.3969/j.issn.1000-4025.2012.08.032.
    [17]

    WANG X J, FENG G H, DENG Z G, et al. Microsporogenesis and microgametogenesis of male-sterile mutant ms1 in alfalfa (Medicago sativa L.)[J]. Crop Science, 2013, 53: 679. DOI: 10.2135/cropsci2012.06.0400.

    [18]

    JIN L, ZHANG J W, LI J, et al. Spontaneous multi-pistil mutant mp1 in alfalfa: floral anatomy and embryo sac development[J]. Agronomy Journal, 2014, 106: 431. DOI: 10.2134/agronj2013.0406.

    [19] 刘林德, 张洪军, 祝宁. 刺五加花粉活力和柱头可授性的研究[J]. 植物研究, 2001, 21(3): 376. DOI: 10.3969/j.issn.1673-5102.2001.03.013.
    [20]

    HESLOP-HARRISON J, HESLOP-HARRISON Y. Pollen-stigma interaction in the Leguminosae: constiutuents of the stylar fluid and stigma secretion of Trifolium pratense L.[J]. Annals of Botany, 1982, 49(6): 729. DOI: 10.1093/oxfordjournals.aob.a086302.

    [21]

    KREITNER G L, SORENSEN E L. Stigma development and the stigmatic cuticle of alfalfa, Medicago sativa L.[J]. Botanical Gazette, 1984, 145(4): 436. DOI: 10.2307/2474251.

    [22] 何承刚, 毕玉芬, 姜华, 等. 紫花苜蓿的花蜜量和访花蜜蜂数量对种子产量的影响[J]. 生态学杂志, 2005, 24(12): 1388.
    [23] 李世雄, 王彦荣, 孙建华. 中国苜蓿品种种子产量性状的遗传多样性[J]. 草业学报, 2003(1): 23. DOI: 10.3321/j.issn:1004-5759.2003.01.005.
    [24]

    RODRIGUEZ-RIAÑO T, LÓPEZ-MARTINEZ J, ORTEGA-OLIVENCIA A, et al. Pollen grain germination, stigmatic receptivity and ovule penetration in Cytisus multiflorus (Papilionoideae)[J]. Acta Horticulturae, 2001, 561: 95. DOI: 10.17660/ActaHortic.2001.561.14.

    [25]

    DAFNI A, PACINI E, NEPI M. Pollen and stigma biology[M]. Cambridge: Enviroquest Ltd., 2005.

    [26]

    BOOY G, KRENS F A, BINO R J. Analysis of pollen-tube growth in cultured maize silks[J]. Sexual Plant Reproduction, 1992, 5: 227. DOI: 10.1007/BF00189816.

    [27] 王金平. 矮慈姑人工授粉后花粉管生长的荧光显微观察[J]. 信阳师范学院学报 (自然科学版), 1999, 12(2): 185. DOI: 10.3969/j.issn.1003-0972.1999.02.018.
    [28] 于艳杰, 吴李君, 吴跃进, 等. 陆地棉花粉粒萌发和花粉管生长特性[J]. 自然科学进展, 2007, 17(9): 1299. DOI: 10.3321/j.issn:1002-008x.2007.09.021.
    [29] 申家恒, 申业, 丁常宏, 等. 辣椒受精过程及其经历时间的研究[J]. 园艺学报, 2008, 35(7): 995. DOI: 10.16420/j.issn.0513-353x.2008.07.011.
    [30] 陶书田, 张绍铃, 陈迪新, 等. 果梅花粉原位萌发及花粉管生长特性的研究[J]. 果树学报, 2004, 21(4): 338. DOI: 10.3969/j.issn.1009-9980.2004.04.014.
    [31]

    MÁRTON M L, DRESSELHAUS T. Female gametophyte-controlled pollen tube guidance[J]. Biochemical Society Transactions, 2010, 38(2): 627. DOI: 10.1042/BST0380627.

    [32]

    VALDIVIA E R, STEPHENSON A G, DURACHKO D M, et al. Class B β-expansins are needed for pollen separation and stigma penetration[J]. Sexual Plant Reproduction, 2009, 22: 141. DOI: 10.1007/s00497-009-0099-y.

    [33]

    CHAE K, LORD E M. Pollen tube growth and guidance: roles of small, secreted proteins[J]. Annals of Botany, 2011, 108(4): 627. DOI: 10.1007/s00497-014-0247-x.

    [34]

    PFAHLERr P L, PEREIRA M J, BARNETT R D. Genetic variation for in vitro sesame pollen germination and tube growth[J]. Theoretical and Applied Genetics, 1997, 95(8): 1218. DOI: 10.1007/s001220050684.

    [35]

    LAUSSER A, DRESSELHAUS T. Sporophytic control of pollen tube growth and guidance in grasses[J]. Biochemical Society Transactions, 2010, 38(2): 631. DOI: 10.1093/jxb/erp330.

    [36]

    DRESSELHAUS T, LAUSSER A, MÁRTON M L. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses[J]. Annals of Botany, 2011, 108(4): 727. DOI: 10.1093/aob/mcr017.

    [37]

    PUNWANI J A, DREWS G N. Development and function of the synergid cell[J]. Sexual Plant Reproduction, 2008, 21: 7. DOI: 10.1007/s00497-007-0059-3.

    [38] 赵学杰, 谭敦炎. 种子植物的选择性败育及其进化生态意义[J]. 植物生态学报, 2007, 31(6): 1007. DOI: 10.17521/cjpe.2007.0128.
    [39]

    SPALIK K. On evolution of andromonoecy and ‘overproduction’ of flowers: a resource allocation model[J]. Biological Journal of the Linnean Society, 1991, 42(3): 325. DOI: 10.1111/j.1095-8312.1991.tb00566.x.

    [40]

    KOLYASNIKOVA N L. Determining the fertility of alfalfa by means of fluorescence microscopy[J]. Botanicheskie Issledovaniyana Urale, 1985: 25.

    [41]

    ROSELLINI D, FERRANTI F, BARONE P, et al. Expression of female sterility in alfalfa (Medicago sativa L.)[J]. Sexual Plant Reproduction, 2003, 15: 271. DOI: 10.1007/s00497-003-0163-y.

  • 期刊类型引用(2)

    1. 赵正婷,盖晓彤,张俊蕾,夏振远,姜宁,刘雅婷. 朱顶红褪绿环斑病毒RT-LAMP快速检测体系的建立. 中国烟草科学. 2023(03): 39-46 . 百度学术
    2. 许云玉,李浩,陈敏,贾志强,高雪,陈增敏,赵于丁,刘雅婷,李永忠. 病毒载体介导的基因沉默体系对朱顶红褪绿环斑病毒NSm基因的沉默效应. 植物保护学报. 2023(04): 923-931 . 百度学术

    其他类型引用(0)

图(4)  /  表(3)
计量
  • 文章访问数:  1927
  • PDF下载量:  14
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-10-06
  • 网络首发日期:  2021-01-29

目录

/

返回文章
返回