苜蓿、小冠花和百脉根花粉管引导和胚珠败育研究
Study on the Pollen Tube Introduction and Ovule Abortion after Cross-pollination in Medicago sativa, Coronilla varia and Lotus cornioulatous
-
Keywords:
- Medicago sativa /
- Coronilla varia /
- Lotus cornioulatous /
- cross-pollination /
- pollen tube /
- ovule abortion
-
朱顶红褪绿环斑病毒(Hippeastrum chlorotic ringspot virus,HCRV)是泛布尼亚病毒科(Peribunyaviridae)番茄斑萎病毒属(Tospovirus)病毒,2013年在中国云南被首次发现并报道[1],本课题组首次报道了朱顶红褪绿环斑病毒的全基因组序列[2-3]。朱顶红褪绿环斑病毒能系统侵染一点红、番茄、莴苣、旱金莲和豇豆等经济作物,主要症状为同心环纹、叶片畸形、局部褪绿和坏死[4],对农业生产造成了严重的威胁。HCRV为三分子基因组,分别是L RNA、M RNA和S RNA。L RNA仅有1个开放阅读框,正向编码RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase,RdRp);M RNA正向编码非结构蛋白(non-structural protein of M RNA,NSm),互补链编码糖蛋白前体(glycoproteins,Gn/Gc);S RNA正向编码非结构蛋白NSs (non-structural protein of S RNA,NSs),互补链编码核壳体蛋白 (nucleocapsid protein,N)[5],N蛋白序列保守程度较高[6],因此通常被用于进行Tospovirus属病毒的分类检测和鉴定[7],N蛋白也可能与病毒粒子装配有关[8]。本研究通过RT-PCR鉴定出葱莲、文殊兰、喜林芋和酢浆草感染HCRV的4份样品。为研究核壳体蛋白序列特征,通过RT-PCR、克隆和测序得到样品完整的HCRV S RNA序列,利用ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/)获得其N蛋白序列并进行分析,为HCRV的后续研究提供基础。
1. 材料与方法
1.1 材料采集
2016年在云南省昆明市主要园林景区进行了调查,采集到八角金盘(Fatsia japonica)、葱莲(Zephyranthes candida)、酢浆草(Oxalis corniculata)、旱金莲(Tropaeolum majus)、蝴蝶兰(Phalaenopsis aphrodite)、文殊兰(Crinum asiaticum)、喜林芋(Philodendron schott)和鸢尾(Iris tectorum)等疑似感染番茄斑萎病毒属病毒样品(图1),主要表现为褪绿、坏死斑和皱缩等症状,将采集回来的样品用RT-PCR进行鉴定。
1.2 总RNA提取
采用去除多糖多酚的TransZol Plant (全式金生物技术有限公司,北京)试剂盒提取RNA,以RNA为模板,采用PrimeScriptTMⅡ1st strand cDNA Synthesis Kit (宝生物技术有限公司,大连)进行反转录合成cDNA。
1.3 RT-PCR扩增、克隆及测序
利用Primer Premier 6.0软件,以GenBank中公布的HCRV S RNA序列(序列号:JX833564.1)设计引物,S RNA扩增引物为:F:5′-AGAGCAATCGAGGTATAAACAAATAATCATACAC-3′;R:5′-AGAGCAATCGAGGTATAAAACATAAATTCTGAAC-3′。50 μL PCR反应体系:cDNA 1 μL,上下游引物各1 μL,FastPfu 1 μL,Buffer 10 μL,dNTP 4 μL,ddH2O 32 μL。PCR反应条件:95 ℃ 1 min;95 ℃ 20 s,50 ℃ 20 s,72 ℃ 1.5 min,40个循环;72 ℃ 5 min;4 ℃保存。PCR反应产物用于1.2%的琼脂糖凝胶电泳检测。将获得的PCR产物进行纯化以及加A反应。将已纯化的PCR产物连接在pEASY-T1载体上,将连接产物导入T1感受态细胞中,经过菌液PCR鉴定出阳性重组子并送到公司进行测序。
1.4 生物信息学分析
通过ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/)获得4个HCRV分离物的N蛋白序列,利用DNAMAN 8.0与分离自云南省蜘蛛兰上的HLS1-2 N蛋白(登录号:AFX74694)进行序列比对分析;利用MEGA 6.06软件对NCBI数据库中已公布的分离自云南、广东、广西和福建地区蜘蛛兰上的HCRV的N蛋白以及本研究获得的4个寄主的N蛋白进行系统进化分析。
2. 结果与分析
2.1 RT-PCR结果
通过RT-PCR技术鉴定出葱莲、文殊兰、喜林芋和酢浆草4份感染HCRV的样品并扩增出HCRV S RNA序列,电泳检测条带大小约为2 700 bp (图2)。
2.2 不同株系HCRV N蛋白序列比对分析
本研究获得的葱莲YN-ZCH、文殊兰YN-CA、喜林芋YN-PS和酢浆草YN-OC的N蛋白,通过DNAMAN 8.0与首个公布的HLS1-2 N蛋白进行序列比对,一致性达到99.34%。YN-ZCH存在6个突变位点,YN-CA存在5个突变位点,YN-PS存在4个突变位点,YN-OC存在6个突变位点(表1)。
表 1 氨基酸突变位点Table 1. Amino acid mutation sites病毒株系 virus strains 氨基酸位点 amino acid site 2 9 50 82 113 118 178 241 249 HCRV-HLS1-2 S A N A N Q I E V HCRV-YN-ZCH T V N V S Q V E A HCRV-YN-CA T V N V N Q V G V HCRV-YN-PS T V N V N Q V E V HCRV-YN-OC T V S V N R V E V 2.3 不同株系HCRV N蛋白系统进化分析
利用MEGA 6.06软件对NCBI数据库中已公布的HCRV的N蛋白以及本研究获得的4个寄主的N蛋白构建系统发育树,建树方法选择邻接法(neighbor-joining,NJ)。结果显示:本研究获得的4个HCRV分离物的N蛋白与分离自云南省的HCRV N蛋白聚为1支,来自广东、广西和福建地区的聚为1支(图3)。
3. 讨论
云南省丰富的植物资源和复杂的气候以及丰富的传播介体种类为Tospovirus病毒的发生和流行提供了条件,该属病毒在云南的发生呈逐年上升趋势[9]。自2013年首次在云南省发现HCRV至今,国内外对其研究较少,目前已知寄主包括蜘蛛兰、烟草、番茄、君子兰[10]和葱莲[11]等,仍有许多寄主尚未被发现。本研究鉴定出葱莲、文殊兰、喜林芋和酢浆草4个感染HCRV样品,其中文殊兰、喜林芋和酢浆草是首次报道的HCRV寄主。研究结果表明:4个HCRV分离物的N蛋白与NCBI首次公布的HLS1-2 N蛋白有较高的同源性,从系统发育分析可知不同株系的分离物聚类现象与寄主无明显关联,推测可能环境因子对病毒进化的影响强于寄主的影响。
4. 结论
本研究通过采集疑似感染番茄斑萎病毒属病毒的样本,应用症状学和分子生物学方法鉴定出了葱莲、文殊兰、喜林芋和酢浆草 4 个感染 HCRV 样品,对 4个寄主植物 S RNA 序列中 N 蛋白进行序列比对和系统进化分析,结果表明 4 个HCRV 分离物 N 蛋白与 NCBI 公布的 HLS1-2 N 蛋白有较高的同源性,HCRV 病毒的地理分布相关性强于寄主相关性。研究结果为 HCRV 的进化研究提供基础,也为进一步探究番茄斑萎病毒属病毒的扩散和进化策略提供参考。
-
图 2 苜蓿异花授粉后2~48 h花粉管的生长和引导
注:a)~b)授粉2 h,柱头上的花粉(a)和花柱基部(b);c)~e)授粉4 h,花粉在柱头萌发(c),少量花粉管进入花柱(d),尚未到达胚珠(e);f)~h)授粉8 h,大量花粉在柱头萌发(f),穿过花柱的花粉管(g)和到达胚珠的花粉管(h);i)授粉12 h,大量花粉管生长至胚珠位置;j)~k)授粉24 h,花粉管继续引导生长(j)直至珠孔位置(k);l)授粉48 h,花粉管进入胚囊。
Figure 2. Growth and guidance of pollen tubes in M. sativa 2-48 h after cross pollination
Note: a)-b) 2 h after pollination, pollens on the stigma (a) and style (b); c)-e) 4 h after pollination, few pollens germinated on the stigma (c), pollen tubes appeared in the style (d) but not at the ovule (e); f)-h) 8 h after pollination, lots of pollens germinated on the stigma (f), pollen tubes through style (g) arrived at the ovules (h); i) 12 h after pollination, more pollen tubes arrived at the ovules; j)-k) 24 h after pollination, pollen tube growth (j) and guidance to the micropyle (k); l) 48 h after pollination, pollen tube entered into the embryo sac.
图 3 小冠花异花授粉后2~48 h花粉管的生长和引导
注:a)~b)授粉2 h,柱头上花粉尚未萌发(a)和花柱(b);c)~d)授粉4 h,花柱基部少量花粉管(c)和到达胚珠的花粉管(d);e)~g)授粉8 h,柱头上花粉萌发和花粉管生长(e),穿过花柱基部到达胚珠的花粉管(f),花粉管向胚珠珠孔端的生长和引导(g);h)~i)授粉12和24 h的胚珠;j)~l)授粉48 h,花柱道(j)、胚珠附近(k)的花粉管和花粉管进入胚囊(l)。
Figure 3. Growth and guidance of pollen tubes in C. varia 2-48 h after cross pollination
Note: a)-b) 2 h after pollination, pollens not yet germinated on the stigma (a) and the style (b); c)-d) 4 h after pollination, pollen tubes appeared in the style (c) and few arrived at the ovule (d); e)-g) 8 h after pollination, pollens germinated on the stigma (e), pollen tubes through the style, arrived at the ovules (f) and guidance to the micropyle (g); h)-i) the ovules pollinated after 12 and 24 h; j)-l) 48 h after pollination, pollen tubes in the style (j) , around the ovules (k) and entered into the embryo sac (l).
图 4 百脉根的异花授粉后2~48 h花粉管生长和引导
注:a)~b)授粉2 h,柱头上尚未萌发的花粉(a)和胚珠(b);c)~d)授粉4 h,柱头上萌发花粉(c)和少量花粉管向花柱道生长(d);e)~f)授粉8 h,花粉管向花柱基部生长(e)和少量花粉管到达胚珠位置(f);g)~h)授粉12 h,大量花粉管向胚珠方向生长(g)和花粉管向珠孔端的引导(h);i)~k)授粉24 h,花粉管向胚珠珠孔处的引导生长;l)授粉48 h,花粉管进入胚囊。
Figure 4. Growth and guidance of pollen tubes in L. cornioulatous 2-48 h after cross pollination
Note: a)-b) 2 h after pollination, pollens not yet germinated on the stigma (a) and the ovule (b); c)-d) 4 h after pollination, pollens germinated on the stigma (c) and few pollen tubes appeared in the style (d); e)-f) 8 h after pollination, pollen tubes went through the style (e) and few arrived at the ovule (f); g)-h) 12 h after pollination, lots of pollen tubes towards the ovule (g) and guided to the micropyles (h); i)-k) 24 h after pollination, guidance of pollen tube to ovules and then to the micropyles; l) 48 h after pollination, pollen tube entered into the embryo sac.
表 1 3种豆科牧草的柱头可授性比较
Table 1 Comparisons of stigma receptivity in three leguminous forages
豆科牧草
leguminous forages柱头可授性 stigma receptivity 柱头角质层
cuticle of stigma阶段 1
stage 1阶段 2
stage 2阶段 3
stage 3紫花苜蓿
M. sativa× √ √ √ 多变小冠花
C. varia× × √ √ 百脉根
L. cornioulatous× √ √ √ 表 2 3种豆科牧草不同授粉时间胚珠受精率
Table 2 Ovule fertilization rate after cross pollination in three leguminous forages
% 授粉时间/h
time苜蓿
M. sativa小冠花
C. varia百脉根
L. cornioulatous4 — 88.97±8.41 a 89.81±4.85 a 8 17.42±6.86 a 96.43±3.57 b 95.38±1.56 b 12 40.28±8.33 b 97.73±3.94 b 99.39±1.22 c 24 64.24±11.47 bcd 97.92±3.61 b 99.09±1.82 c 48 70.69±7.82 cd 100.00±0.00 b 100.00±0.00 c 96 76.40±4.45 d 100.00±0.00 b 100.00±0.00 c 注:不同小写字母表示差异显著(P<0.05);下同。
Note: Different small letters indicate significant difference at 0.05 level (P<0.05); the same as below.表 3 3种豆科牧草胚珠败育位置及其败育率
Table 3 Position of ovule abortion and ovule abortion rate in three leguminous forages
% 败育位置
position of ovule abortion苜蓿
M. sativa小冠花
C. varia百脉根
L. cornioulatous荚果上部 upper part of pod 94±2.58 a 82±3.65 a 76±9.09 a 荚果中部 middle part of pod 88±5.16 a 74±4.76 a 86±5.03 a 荚果下部 lower part of pod 81±8.22 a 78±7.39 a 82±7.02 a -
[1] 张爱勤, 谭敦炎, 朱进忠. 苜蓿传粉特性及其制约种子产量形成的因分析[J]. 草业科学, 2005, 22(11): 40. DOI: 10.3969/j.issn.1001-0629.2005.11.009. [2] BECKER T, VOSS N, DURKA W. Pollen limitation and inbreeding depression in an ‘oldrare’ bumble bee-pollinated grassland herb[J]. Plant Biology, 2011, 13(6): 857. DOI: 10.1111/j.1438-8677.2011.00452.x.
[3] RUDALL P J, BATEMAN R M. Developmental bases for key innovations in the seed-plant microgametophyte[J]. Trends in Plant Science, 2007, 12: 317. DOI: 10.1016/J.TPLANTS.2007.06.004.
[4] LORENZETTI F. Achieving potential herbage seed yields in species of temperate reginons[C]//BAKER M J. Proceedings of the 17th International Grassland Congress. Wellington, New Zealand, 1993.
[5] 李晓霞, 金樑, 王晓娟. 几个紫花苜蓿亚(变)种花粉和胚珠遗传变异分析[J]. 中国农业科学, 2009, 42(6): 1911. DOI: 10.3864/j.issn.0578-1752.2009.06.005. [6] BOS M M, VEDDELER D, BOGDANSKI A K, et al. Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination[J]. Ecological Applications, 2007, 17(6): 1841. DOI: 10.1890/06-1763.1.
[7] AYRE D J, WHELLAN R J. Factors controlling fruit set in hermaphroditic plants: studies with the Australian Proteaceae[J]. Trends in Ecology & Evolution, 1989, 4(9): 267. DOI: 10.1016/0169-5347(89)90197-3.
[8] STEPHENSON A G. Flower and fruit abortion: proximate causes and ultimate functions[J]. Annual Review of Ecology and Systematics, 1981, 12: 253. DOI: 10.1146/annurev.es.12.110181.001345.
[9] BURD M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set[J]. The Botanical Review, 1994, 60(1): 83. DOI: 10.1007/BF02856594.
[10] DUAN Q H, LIU M C J, KITA D, et al. FERONIA controls pectin- and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579: 561. DOI: 10.1038/s41586-020-2106-2.
[11] XIONG H, ZOU F, YUAN D, et al. Comparison of self- and cross-pollination in pollen tube growth, early ovule development and fruit set of Camellia grijsii[J]. International Journal of Agriculture and Biology, 2019, 21(4): 819. DOI: 10.17957/IJAB/15.0960.
[12] SHAO F X, WANG S, LIU Z M, et al. Pollination, fertilization, and embryo development in Southern China fresh-eating jujube[J]. HortScience, 2020, 55(8): 1315. DOI: 10.21273/HORTSCI15144-20.
[13] 刘红平, 李晓霞, 王晓娟. 紫花苜蓿的传粉昆虫种类及其访花行为[J]. 生态学杂志, 2008, 27(5): 780. DOI: 10.13292/j.1000-4890.2008.0173. [14] WANG X J, LIU H P, HUANG L C, et al. Biodiversity of wild alfalfa pollinators and their temporal foraging characters in Hexi Corridor, Northwest China[J]. Entomologica Fennica, 2012, 23: 4. DOI: 10.33338/ef.84561.
[15] 黄利春, 金樑, 李晶, 等. 蝶形花亚科植物花部适应机制与传粉系统[J]. 生态学报, 2014, 34(19): 5360. DOI: 10.5846/stxb201301180120. [16] 张静文, 金樑, 邓志刚, 等. 花粉管生长和极性引导的孢子体和配子体控制[J]. 西北植物学报, 2012, 32(8): 1712. DOI: 10.3969/j.issn.1000-4025.2012.08.032. [17] WANG X J, FENG G H, DENG Z G, et al. Microsporogenesis and microgametogenesis of male-sterile mutant ms1 in alfalfa (Medicago sativa L.)[J]. Crop Science, 2013, 53: 679. DOI: 10.2135/cropsci2012.06.0400.
[18] JIN L, ZHANG J W, LI J, et al. Spontaneous multi-pistil mutant mp1 in alfalfa: floral anatomy and embryo sac development[J]. Agronomy Journal, 2014, 106: 431. DOI: 10.2134/agronj2013.0406.
[19] 刘林德, 张洪军, 祝宁. 刺五加花粉活力和柱头可授性的研究[J]. 植物研究, 2001, 21(3): 376. DOI: 10.3969/j.issn.1673-5102.2001.03.013. [20] HESLOP-HARRISON J, HESLOP-HARRISON Y. Pollen-stigma interaction in the Leguminosae: constiutuents of the stylar fluid and stigma secretion of Trifolium pratense L.[J]. Annals of Botany, 1982, 49(6): 729. DOI: 10.1093/oxfordjournals.aob.a086302.
[21] KREITNER G L, SORENSEN E L. Stigma development and the stigmatic cuticle of alfalfa, Medicago sativa L.[J]. Botanical Gazette, 1984, 145(4): 436. DOI: 10.2307/2474251.
[22] 何承刚, 毕玉芬, 姜华, 等. 紫花苜蓿的花蜜量和访花蜜蜂数量对种子产量的影响[J]. 生态学杂志, 2005, 24(12): 1388. [23] 李世雄, 王彦荣, 孙建华. 中国苜蓿品种种子产量性状的遗传多样性[J]. 草业学报, 2003(1): 23. DOI: 10.3321/j.issn:1004-5759.2003.01.005. [24] RODRIGUEZ-RIAÑO T, LÓPEZ-MARTINEZ J, ORTEGA-OLIVENCIA A, et al. Pollen grain germination, stigmatic receptivity and ovule penetration in Cytisus multiflorus (Papilionoideae)[J]. Acta Horticulturae, 2001, 561: 95. DOI: 10.17660/ActaHortic.2001.561.14.
[25] DAFNI A, PACINI E, NEPI M. Pollen and stigma biology[M]. Cambridge: Enviroquest Ltd., 2005.
[26] BOOY G, KRENS F A, BINO R J. Analysis of pollen-tube growth in cultured maize silks[J]. Sexual Plant Reproduction, 1992, 5: 227. DOI: 10.1007/BF00189816.
[27] 王金平. 矮慈姑人工授粉后花粉管生长的荧光显微观察[J]. 信阳师范学院学报 (自然科学版), 1999, 12(2): 185. DOI: 10.3969/j.issn.1003-0972.1999.02.018. [28] 于艳杰, 吴李君, 吴跃进, 等. 陆地棉花粉粒萌发和花粉管生长特性[J]. 自然科学进展, 2007, 17(9): 1299. DOI: 10.3321/j.issn:1002-008x.2007.09.021. [29] 申家恒, 申业, 丁常宏, 等. 辣椒受精过程及其经历时间的研究[J]. 园艺学报, 2008, 35(7): 995. DOI: 10.16420/j.issn.0513-353x.2008.07.011. [30] 陶书田, 张绍铃, 陈迪新, 等. 果梅花粉原位萌发及花粉管生长特性的研究[J]. 果树学报, 2004, 21(4): 338. DOI: 10.3969/j.issn.1009-9980.2004.04.014. [31] MÁRTON M L, DRESSELHAUS T. Female gametophyte-controlled pollen tube guidance[J]. Biochemical Society Transactions, 2010, 38(2): 627. DOI: 10.1042/BST0380627.
[32] VALDIVIA E R, STEPHENSON A G, DURACHKO D M, et al. Class B β-expansins are needed for pollen separation and stigma penetration[J]. Sexual Plant Reproduction, 2009, 22: 141. DOI: 10.1007/s00497-009-0099-y.
[33] CHAE K, LORD E M. Pollen tube growth and guidance: roles of small, secreted proteins[J]. Annals of Botany, 2011, 108(4): 627. DOI: 10.1007/s00497-014-0247-x.
[34] PFAHLERr P L, PEREIRA M J, BARNETT R D. Genetic variation for in vitro sesame pollen germination and tube growth[J]. Theoretical and Applied Genetics, 1997, 95(8): 1218. DOI: 10.1007/s001220050684.
[35] LAUSSER A, DRESSELHAUS T. Sporophytic control of pollen tube growth and guidance in grasses[J]. Biochemical Society Transactions, 2010, 38(2): 631. DOI: 10.1093/jxb/erp330.
[36] DRESSELHAUS T, LAUSSER A, MÁRTON M L. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses[J]. Annals of Botany, 2011, 108(4): 727. DOI: 10.1093/aob/mcr017.
[37] PUNWANI J A, DREWS G N. Development and function of the synergid cell[J]. Sexual Plant Reproduction, 2008, 21: 7. DOI: 10.1007/s00497-007-0059-3.
[38] 赵学杰, 谭敦炎. 种子植物的选择性败育及其进化生态意义[J]. 植物生态学报, 2007, 31(6): 1007. DOI: 10.17521/cjpe.2007.0128. [39] SPALIK K. On evolution of andromonoecy and ‘overproduction’ of flowers: a resource allocation model[J]. Biological Journal of the Linnean Society, 1991, 42(3): 325. DOI: 10.1111/j.1095-8312.1991.tb00566.x.
[40] KOLYASNIKOVA N L. Determining the fertility of alfalfa by means of fluorescence microscopy[J]. Botanicheskie Issledovaniyana Urale, 1985: 25.
[41] ROSELLINI D, FERRANTI F, BARONE P, et al. Expression of female sterility in alfalfa (Medicago sativa L.)[J]. Sexual Plant Reproduction, 2003, 15: 271. DOI: 10.1007/s00497-003-0163-y.
-
期刊类型引用(2)
1. 赵正婷,盖晓彤,张俊蕾,夏振远,姜宁,刘雅婷. 朱顶红褪绿环斑病毒RT-LAMP快速检测体系的建立. 中国烟草科学. 2023(03): 39-46 . 百度学术
2. 许云玉,李浩,陈敏,贾志强,高雪,陈增敏,赵于丁,刘雅婷,李永忠. 病毒载体介导的基因沉默体系对朱顶红褪绿环斑病毒NSm基因的沉默效应. 植物保护学报. 2023(04): 923-931 . 百度学术
其他类型引用(0)