枫香黑色素提取工艺优化及其对糯米的染色特性研究
Optimization of Extraction Conditions of Melanin from Liquidambar formosana Hance and Its Dyeing Characteristic on Glutinous Rice
-
青稞(Hordeum vulgare Linn. var. nudum Hook.f.)又称裸大麦,是禾本科大麦属禾谷类作物[1]。有些青稞品种籽粒呈紫黑色,含有丰富的花青素,还含有丰富的膳食纤维和β-葡聚糖[2-4],使青稞不仅在食用方面有着良好的营养价值,在医疗保健方面同样具有一定的作用。因此,青稞籽粒常用于加工成各种保健食品。
由于青藏高原的环境条件比较恶劣,很多作物都无法适应和生长,但青稞却表现出突出的抗逆能力,成为当地植物适应性进化的典型代表[5]。在西藏和云南省迪庆州等青稞生产区,其生长期虽然雨水较多,但播种期大多处于旱季,土壤缺水容易造成出苗率低和出苗不整齐等情况,造成青稞种子的浪费。为了提高青稞种子的出苗率和整齐度,播种前进行种子引发是抵御播种期土壤干旱的重要措施。种子引发又称渗透调节,是将种子浸泡于较高渗透势溶液中,使种子在吸胀过程中减缓吸水速率,促使种子在萌发前充分完成各种修复与活化,有利于播种后快速整齐出苗[6-9]。种子引发除了能提高种子萌发速率和田间整齐度外,还能提高作物的抗盐能力[10]、抗逆性及抗病性[11]。本研究选用6个青稞品系,采用不同质量浓度的食盐溶液和不同引发处理时间,对青稞种子进行引发处理和发芽试验,测定苗长、发芽势、发芽率、发芽指数和活力指数等发芽特性,筛选出适于青稞种子引发的最佳食盐质量浓度和引发时间,提高青稞种子发芽速率和整齐度,保证出苗齐全,为高产栽培奠定基础。
1. 材料与方法
1.1 供试材料
选用云南农业大学新近选育的滇青1号、2015-129、2015-130、2015-132、2015-137和2015-138共6个青稞品系进行研究。
1.2 引发试验
采用青稞品种、食盐溶液质量浓度和引发时间3因素完全随机试验设计。试验时,每个处理取种子100粒,置于25 mL的具塞试管中,分别加入0 (清水,CK)、0.025、0.050、0.075和0.100 g/mL食盐溶液10 mL,加塞密封。各质量浓度处理在15 ℃下分别浸泡1、2、3、4、5和6 h进行引发,重复3次。引发结束后,用清水将种子表面的食盐溶液冲洗干净备用。
1.3 发芽试验
将经过引发的种子置于垫有2层经高温消毒吸水纸的发芽盒中进行标准发芽试验,测定种子发芽特性[12]。从发芽试验的第2天开始,每天统计已发芽的全部种子数,连续统计7 d。以胚根与种子等长、胚芽长到种子长度一半为标准判断种子是否发芽,到第7天发芽试验结束时测定平均苗长[13]。然后根据统计结果计算发芽势、发芽率、发芽指数和活力指数,计算公式[14-15]如下:
发芽势(GP)=(发芽试验第4天正常发芽种子数/供试种子总数)×100%;
发芽率(GR)= (发芽试验第7天正常发芽种子数/供试种子总数)×100%;
发芽指数(GI)=∑(Gt/Dt);
活力指数(GVI)=GI×S;
式中,Gt为每天发芽种子数;Dt为对应发芽时间;S为幼苗发芽试验结束时幼苗的平均长度。
1.4 数据统计与分析
采用Excel 2016和SPSS 17.0分别对青稞的苗长、发芽势、发芽率、发芽指数和活力指数进行多元方差分析和多重比较(Duncan’s法)分析。
2. 结果与分析
2.1 青稞种子发芽特性的方差分析
由表1可知:品系间、质量浓度间、引发时间之间,以及品系和引发时间互作对苗长、发芽势、发芽率、发芽指数和活力指数均有极显著的影响,说明本研究设计合理,设置的质量浓度梯度和引发时间有效,可进行进一步统计分析。
表 1 青稞种子发芽特性方差F值分析Table 1. The F value of analysis of variance of the germination characteristics of hulless barley项目 item 苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index品系间 among the lines 849.55** 83.57** 83.12** 219.37** 453.40** 质量浓度间 among the mass concentrations 1 155.96** 87.29** 66.71** 81.63** 750.58** 引发时间间 among the priming time 41.26** 24.78** 24.69** 26.82** 39.52** 品系×质量浓度 lines × mass concentrations 0.06 0.23 1.27 0.28 1.47 品系×引发时间 lines × priming time 12.73** 9.76** 10.62** 10.39** 6.48** 质量浓度×引发时间
mass concentrations × priming time0.01 1.47 1.22 0.88 0.67 品系×质量浓度×引发时间
lines × mass concentrations × priming time0.02 0.21 0.41 0.20 0.15 注:“*”和“**”分别表示0.05和0.01显著水平。
Note: “*” and “**” show the significant difference at 0.05 and 0.01 levels, respectively.2.2 食盐溶液对不同青稞品系种子发芽特性的影响
由表2可知:不同质量浓度的食盐溶液对不同品系青稞种子的引发效果不尽相同。滇青1号和2015-132的活力指数极显著高于其他品系,且2015-132的发芽势、发芽率和发芽指数均极显著高于其他品系(P<0.01);2015-137的苗长极显著高于其他品系(P<0.01);2015-129的苗长、发芽势、发芽率和活力指数均处于最低水平,明显低于其他青稞品系,说明该品系进行引发处理后发芽情况较差。
表 2 食盐溶液对不同青稞品系种子发芽特性的影响Table 2. Effects of salt solution on the seed germination characteristics of different hulless barley varieties (lines)品系
lines苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index滇青1号 Dianqing No.1 13.83 bB 86.38 cC 90.44 bB 66.55 bB 927.04 aA 2015-129 9.75 eE 79.69 fE 83.73 eE 58.12 dD 571.99 eE 2015-130 9.64 eE 84.22 dD 88.24 cC 63.70 cC 618.79 dD 2015-132 11.87 dD 93.42 aA 96.29 aA 74.64 aA 892.42 bB 2015-137 14.37 aA 82.73 eD 86.31 dD 57.74 dD 834.55 cC 2015-138 12.57 cC 88.69 bB 91.67 bB 67.06 bB 847.00 cC 注:同一列不同大小写字母分别表示在0.01和0.05水平上差异显著;下同。
Note: The different capital and lowercase letters in the same column indicate a significant difference on 0.01 and 0.05 levels, respectively; the same as below.2.3 食盐溶液质量浓度对青稞种子发芽特性的影响
由表3可知:采用0.025 g/mL食盐溶液引发的青稞种子,其苗长、发芽势、发芽率、发芽指数和活力指数都极显著高于其他处理(P<0.01),而0.050、0.075和0.100 g/mL食盐溶液处理后的青稞种子各项指标随着食盐溶液质量浓度的增大明显下降。0.050 g/mL食盐溶液引发的种子,其发芽率与对照无显著差异,但发芽势和发芽指数显著高于对照,苗长和活力指数均极显著低于对照。0.075和0.100 g/mL食盐溶液引发的青稞种子,其所有发芽特性均极显著低于对照(P<0.01)。可见,0.025 g/mL的食盐溶液对青稞种子的引发效果最好。
表 3 不同食盐溶液质量浓度(ρ)对青稞种子发芽特性的影响Table 3. Effect of salt solution of different mass concentrations (ρ) on the seed germination of hulless barleyρ/(g·mL−1) 苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index0 13.48 bB 87.15 cB 90.20 bB 65.36 cB 881.81 bB 0.025 13.98 aA 90.81 aA 94.81 aA 68.87 aA 963.43 aA 0.050 12.78 cC 88.74 bB 89.91 bB 66.65 bB 852.72 cC 0.075 10.98 dD 82.78 dC 86.65 cC 62.36 dC 685.24 dD 0.100 8.78 eE 79.80 eD 85.67 cC 59.94 eD 526.63 eE 2.4 食盐溶液引发时间对青稞种子发芽特性的影响
由表4可知:用食盐溶液引发青稞种子3 h时,活力指数极显著高于其他处理(P<0.01);引发3 h的苗长显著高于其他处理(P<0.05);引发3 h的发芽指数虽然与引发2 h的效果差异不显著,但两者的发芽指数均显著高于其他处理;引发3 h的发芽势和发芽率虽然与引发1和2 h的效果没有显著差异,但均显著高于其他处理(P<0.05)。由此可知,用食盐溶液引发3 h可明显提高青稞种子的发芽特性。
表 4 食盐溶液引发时间对青稞种子发芽特性的影响Table 4. Effect of salt solution of priming time on the seed germination of hulless barley引发时间/h
priming time苗长/cm
seedling length发芽势/%
germination potential发芽率/%
germination rate发芽指数
germination index活力指数
vigor index1 11.87 cB 87.89 abA 91.62 aA 63.99 bB 761.35 cC 2 11.89 cB 87.36 abA 90.58 abAB 67.23 aA 802.03 bB 3 12.60 aA 88.36 aA 91.80 aA 66.66 aA 850.62 aA 4 11.95 cB 86.38 bA 89.49 bB 61.00 cC 736.32 dC 5 12.38 bA 82.60 cB 85.91 dC 64.47 bB 800.70 bB 6 11.34 dC 82.56 cB 87.29 cC 64.46 bB 740.79 dC 3. 讨论
种子引发可有效改善种子活力,提高种子成苗率和幼苗健壮度[16]。尤其在播种期遇到土壤干旱时,通过种子引发可有效提高种子的发芽率和发芽速度,保证出苗齐全。不同引发方法的效果存在明显差异[17]。种子引发后,由于吸收了一定量的水分,种子耐藏能力下降,寿命变短,还会出现种子发霉和变质等问题[18-19],大规模推广时会带来一定的难度[20-21]。因此,通过系统研究分析现有引发技术中存在的缺陷,找出有效的解决办法和技术措施,已成为种子引发技术研究的当务之急[22]。
本研究表明:利用食盐溶液对青稞种子进行引发,对苗长、发芽势、发芽率、发芽指数和活力指数等发芽特性有明显影响。许多研究也证明了种子引发在一定程度上可提高各类作物的发芽率及成活率,进而提高作物产量[13, 23-25]。用食盐溶液对青稞种子引发处理后,不同品系对溶液质量浓度和引发时间的响应不尽相同,说明品种间存在一定的差异。研究结果还显示:用于引发的食盐溶液质量浓度不宜过高,引发时间也不宜过长。因此,选用食盐溶液进行引发时,选取最佳的引发时间和引发质量浓度就尤为重要。本研究通过综合比较分析,发现0.025 g/mL的食盐溶液对青稞种子进行3 h的引发效果最好。因此,采用食盐溶液引发青稞种子时不必过早,处理种子也不宜过多,只需要在播种前3 h进行处理,经过引发处理的种子能够当天播种完毕即可,不宜存放。
本研究采用食盐溶液对青稞种子进行引发,是因为食盐价格低廉,溶液配置简便,方法简单易行,便于操作,适合广大种植户采用。此外,西藏和云南迪庆州等地区虽然在青稞生长季有较多的雨水,但在青稞的播种期,这些地区大多处于旱季,因此本研究成果特别适合在青稞播种期土壤较为干旱的地区应用和推广,以提高青稞出苗的速度和整齐度,降低播种成本,提高播种效果,形成健壮幼苗,使青稞有效度过干旱的播种季,对青稞播种实践具有一定的指导意义。
-
图 2 各两因素交互作用对色素提取率的响应面
注:a)、c)和e)为各两因素交互作用对色素提取率的等高线图,图上数值为OD270 nm;b)、d)和f)为各两因素交互作用对色素提取率的三维响应面图。
Figure 2. The response surface interaction of various factors to the yield of pigments
Note: a), c) and e) are contour plots of the interaction of the two factors on the extraction rate of pigment, and the data on the contour plots are OD270nm; b), d) and f) are three-dimensional response surface curve of the interaction of the two factors on the extraction rate of pigment.
图 5 染色前后生糯米胚乳细胞表面微观结构
注:a) 未染色糯米胚乳细胞微观结构 (200×);b) 未染色糯米胚乳细胞微观结构 (5 000×);c) 染色糯米胚乳细胞微观结构 (200×);d) 染色糯米胚乳细胞微观结构 (5 000×)。
Figure 5. Microstructure of albuminous cells of raw glutinous rice before and after dyeing
Note: a) microstructure of albuminous cells of undyed rice (200×); b) microstructure of albuminous cells of undyed rice (5 000×); c) microstructure of albuminous cells of dyeing rice (200×); d) microstructure of albuminous cells of dyeing rice (5 000×).
图 6 染色前后糊化糯米胚乳细胞表面微观结构
注:a) 未染色糊化糯米胚乳细胞微观结构 (200×);b)未染色糊化糯米胚乳细胞微观结构 (5 000×);c) 染色糊化糯米胚乳细胞微观结构 (200×);d) 染色糊化糯米胚乳细胞微观结构(5 000×)。
Figure 6. Microstructure of albuminous cells of gelatinized glutinous rice before and after dyeing
Note: a) microstructure of albuminous cells of gelatinized undyed rice (200×); b) microstructure of albuminous cells of gelatinized undyed rice (5 000×); c) microstructure of albuminous cells of gelatinized dyeing rice (200×); d) microstructure of albuminous cells of gelatinized dyeing rice (5 000×).
表 1 响应面试验因素与水平设计
Table 1 Independent variables and their levels used in response surface analysis
水平
levelA B C 提取时间/h
extraction time提取温度/℃
extraction temperature料液比/(g·mL−1)
solid-liquid ratio−1 5 50 1∶30 0 6 60 1∶40 1 7 70 1∶50 表 2 响应面分析结果
Table 2 Experimental design and results of response surface analysis
编号
No.提取时间/h
extraction time提取温度/℃
extraction temperature料液比/(g·mL−1)
solid-liquid ratioOD270 nm 1 6 70 1∶50 0.760 2 5 60 1∶50 0.734 3 6 60 1∶40 0.703 4 7 60 1∶30 0.708 5 7 70 1∶40 0.671 6 6 60 1∶40 0.722 7 6 60 1∶40 0.712 8 5 60 1∶30 0.716 9 6 60 1∶40 0.712 10 5 70 1∶40 0.679 11 6 50 1∶50 0.709 12 7 60 1∶50 0.685 13 6 70 1∶30 0.732 14 6 60 1∶40 0.711 15 7 50 1∶40 0.636 16 5 50 1∶40 0.668 17 6 50 1∶30 0.764 表 3 枫香黑色素提取效果回归模型方差分析表
Table 3 Analysis of variance analysis of degree of the effect of pigments
来源
source平方和
sum of squares自由度
df均方
mean squareF值
F-valueP值
P-value显著性
significant模型 model 0.016 50 9 0.001 834 35.628 151 < 0.000 1 ** X1 0.001 19 1 0.001 194 23.199 871 0.001 9 ** X2 0.000 50 1 0.000 504 9.783 439 0.016 7 * X3 0.000 13 1 0.000 128 2.492 323 0.158 4 X1X2 0.000 15 1 0.000 150 2.923 770 0.131 0 X1X3 0.000 40 1 0.000 403 7.824 212 0.026 6 * X2X3 0.001 71 1 0.001 708 33.196 400 0.000 7 ** X12 0.006 63 1 0.006 630 128.832 243 < 0.000 1 ** X22 0.000 36 1 0.000 362 7.036 818 0.032 8 * X32 0.006 05 1 0.006 046 117.471 641 < 0.000 1 ** 残差 residual 0.000 36 7 0.000 051 失拟项 lack of fit 0.000 18 3 0.000 060 1.310 795 0.386 9 ns 纯误差 pure error 0.000 18 4 0.000 045 总方差 total variance 0.016 86 16 注:“*”表示差异显著,P<0.05;“**”表示差异极显著,P<0.01;ns. 无显著差异。
Note: “*” indicates significant difference, P<0.05; “**” indicates extremely significant difference, P<0.01; ns. no significant difference.表 4 米饭感官评定结果
Table 4 Results of sensory evaluation for rice
感官评价指标
index of sensory evaluation白米饭
glutinous rice染色米饭
dyeing rice气味 flavor 17.82±0.60 a 13.64±1.50 b 颜色 color 12.00±1.48 a 11.18±1.72 a 光泽 luster 7.09±0.70 a 7.09±0.54 a 完整性 integrity 6.36±0.50 a 6.18±0.60 a 粘性 viscosity 6.73±1.01 a 5.73±1.01 b 弹性 springiness 6.55±0.69 a 5.55±0.69 b 软硬度 hardness 4.91±1.50 a 5.91±1.04 a 滋味 taste 16.45±1.29 a 11.82±1.94 b 冷饭质地 texture of cold cooked rice 3.36±0.67 a 3.36±1.12 a 总分 total score 81.27±3.72 a 70.45±2.42 b 注:同行中不同字母表示在P<0.05 水平上具有显著性差异。
Note: Different letters mean significant difference in the same line (P<0.05). -
[1] LUO Z D, GUAN H D, ZHANG X P, et al. Photosynthetic capacity of senescent leaves for a subtropical broadleaf deciduous tree species Liquidambar formosana Hance[J]. Scientific Reports, 2017, 7: 6323. DOI: 10.1038/s41598-017-06629-7.
[2] 刘竹枝, 夏梦, 陆宽, 等. 黔西南南龙布依古寨4种染食植物研究进展[J]. 贵州农业科学, 2017, 45(8): 4. DOI: 10.3969/j.issn.1001-3601.2017.08.002. [3] 袁惠. 枫香树叶化学成分及质量标准研究[D]. 南昌: 南昌大学, 2014. [4] 覃勇荣, 梁严丹, 刘旭辉. 枫叶食用黑色素的提取及工艺条件优化[J]. 食品科技, 2016, 41(12): 177. DOI: 10.13684/j.cnki.spkj.2016.12.036. [5] 方玉梅, 张萍, 王毅红, 等. 黔产枫香树叶黑色素的生物活性研究[J]. 食品研究与开发, 2015, 36(14): 36. DOI: 10.3969/j.issn.1005-6521.2015.14.010. [6] 谢跃生, 郑小军, 郑丽蓉, 等. 枫香树叶中某些水溶性微量元素的分析[J]. 广西师院学报(自然科学版), 2000, 17(3): 5. DOI: 10.16601/j.cnki.issn1001-8743.2000.03.002. [7] 郑毅, 张青. 江西野生枫香活性成分提取及鞣质含量研究[J]. 江西化工, 2004(2): 99. DOI: 10.14127/j.cnki.jiangxihuagong.2004.02.024. [8] CARLA D C J, CARLOS S F, HE J, et al. Characterisation and preliminary bioactivity determination of Berberis boliviana Lechler fruit anthocyanins[J]. Food Chemistry, 2011, 128(3): 717. DOI: 10.1016/j.foodchem.2011.03.094.
[9] MARYAM A, SEPIDEH H, ZAHRA-SADAT A. Optimization of total phenol and anthocyanin extraction from the peels of eggplant (Solanum melongena L. ) and biological activity of the extracts[J]. Journal of Food Measurement and Characterization, 2019, 13(4): 15. DOI: 10.1007/s11694-019-00241-1.
[10] KHALIFA I, XIA D, DUTTA K, et al. Mulberry anthocyanins exert anti-AGEs effects by selectively trapping glyoxal and structural-dependently blocking the lysyl residues of β-lactoglobulins[J]. Bioorganic Chemistry, 2020, 96: 103615. DOI: 10.1016/j.bioorg.2020.103615.
[11] MOHAMMADI P P, FAKHRI S, ASGARY S, et al. The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases[J]. Frontiers in Pharmacology, 2019, 10: 1207. DOI: 10.3389/fphar.2019.01207.
[12] GRACE M H, XIONG J, ESPOSITO D, et al. Simultaneous LC-MS quantification of anthocyanins and non-anthocyanin phenolics from blueberries with widely divergent profiles and biological activities[J]. Food Chemistry, 2019, 277: 336. DOI: 10.1016/j.foodchem.2018.10.101.
[13] SANG J, ZHANG Y, SANG J, et al. Anthocyanins from Nitraria tangutorun: qualitative and quantitative analyses, antioxidant and anti-inflammatory activities and their stabilities as affected by some phenolic acids[J]. Journal of Food Measurement & Characterization, 2019, 13: 421. DOI: 10.1007/s11694-018-9956-4.
[14] OJEDA D, JIMÉNEZ-FERRER E, ZAMILPA A, et al. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa[J]. Journal of Ethnopharmacology, 2010, 127: 7. DOI: 10.1016/j.jep.2009.09.059.
[15] ODETTE M S, TAFADZWA N, TONY K M, et al. Blackcurrant anthocyanins modulate CCL11 secretion and suppress allergic airway inflammation[J]. Molecular Nutrition & Food Research, 2017, 61(9): 1600868. DOI: 10.1002/mnfr.201600868.
[16] 邹青飞, 吴跃中, 杨士花, 等. 仙人掌果色素的提取工艺优化及体外抗氧化活性[J]. 食品研究与开发, 2018, 39(13): 33. DOI: 10.3969/j.issn.1005-6521.2018.13.007. [17] 黄建蓉, 李慕紫, 陈颖蕾, 等. 鸢尾科红葱红色素的提取及抗氧化活性评价[J]. 食品工业, 2017, 38(7): 75. [18] 张莉, 陈燕仪, 钟红梅, 等. 响应面法优化枫香树叶黑色素微波法提取工艺及其稳定性研究[J]. 食品科技, 2016, 41(11): 190. DOI: 10.13684/j.cnki.spkj.2016.11.043. [19] 谢宇奇, 莫春凤, 奚文权. 枫香黑色素粗产品清除DPPH自由基活性研究[J]. 粮油食品科技, 2016, 24(5): 83. DOI: 10.16210/j.cnki.1007-7561.2016.05.019. [20] 徐塬, 王立. 乌饭树树叶色素对大米蛋白的染色机理[J]. 中国食品学报, 2016, 16(4): 58. DOI: 10.16429/j.1009-7848.2016.04.009. [21] 徐塬, 王立, 钱海峰, 等. 乌饭树树叶色素与大米蛋白相互作用的研究[J]. 现代食品科技, 2015, 31(12): 121. DOI: 10.13982/j.mfst.1673-9078.2015.12.018. [22] 徐塬. 乌饭树树叶提取物与大米蛋白和淀粉相互作用的研究[D]. 无锡: 江南大学, 2015. [23] 谢宇奇, 零学仕, 周作树, 等. 枫香树叶黑色素粗产品提取工艺的优化[J]. 江苏农业科学, 2015, 43(11): 348. DOI: 10.15889/j.issn.1002-1302.2015.11.109. [24] BRAND-WILLIAMS W, CUVELIER M E, BERSET C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food science and Technology, 1995, 28(1): 25. DOI: 10.1016/S0023-6438(95)80008-5.
[25] ARNAO M B, CANO A, ACOSTA M. The hydrophilic and lipophilic contribution to total antioxidant activity[J]. Food Chemistry, 2001, 73(2): 239. DOI: 10.1016/S0308-8146(00)00324-1.
[26] KATALINIĆ V, MILOS M, MODUN D, et al. Antioxidant effectiveness of selected wines in comparison with (+)-catechin[J]. Food Chemistry, 2004, 86(4): 593. DOI: 10.1016/j.foodchem.2003.10.007.
[27] OU B X, HUANG D J, HAMPSCH-WOODILL M, et al. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study[J]. Journal of agricultural and food chemistry, 2002, 50(11): 3122. DOI: 10.1021/jf0116606.
[28] XU D P, ZHENG J, ZHOU Y, et al. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods[J]. Food Chemistry, 2017, 217: 552. DOI: 10.1016/j.foodchem.2016.09.013.
[29] 赵存朝, 王雪峰, 黄梦, 等. 贯筋藤酶解山羊乳酪蛋白糖巨肽的工艺研究[J]. 中国乳品工业, 2017, 46(9): 25. DOI: 10.3969/j.issn.1001-2230.2018.09.005. [30] ZHANG L, ZHU M F, TU Z C, et al. α-Glucosidase inhibition, anti-glycation and antioxidant activities of Liquidambar formosana Hance leaf, and identification of phytochemical profile[J]. South African Journal of Botany, 2017, 113: 239. DOI: 10.1016/j.sajb.2017.08.010.
[31] WANG K, PAN Y M, WANG H S, et al. Antioxidant activities of Liquidambar formosana Hance leaf extracts[J]. Medicinal Chemistry Research, 2010, 19(2): 166. DOI: 10.1007/s00044-009-9181-0.
[32] XIE F, HUANG Q, FANG F, et al. Effects of tea polyphenols and gluten addition on in vitro wheat starch digestion properties[J]. International Journal of Biological Macromolecules, 2019, 126: 525. DOI: 10.1016/j.ijbiomac.2018.12.224.
[33] SUN L J, MIAO M. Dietary polyphenols modulate starch digestion and glycaemic level: a review[J]. Critical Reviews in Food Science & Nutrition, 2020, 60(4): 541. DOI: 10.1080/10408398.2018.1544883.
[34] GUO Z B, ZHAO B B, CHEN J, et al. Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure[J]. Food Chemistry, 2019, 297: 124992. DOI: 10.1016/j.foodchem.2019.124992.
[35] 刘立增, 孟宪昉, 郭俊杰, 等. 红曲红色素在淀粉颗粒表面吸附机制研究[J]. 食品研究与开发, 2015, 36(14): 41. DOI: 10.3969/j.issn.1005-6521.2015.14.011. [36] AMOAKO D B, AWIKA J M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose[J]. Food Chemistry, 2019, 285: 326. DOI: 10.1016/j.foodchem.2019.01.173.
[37] TAKAHAMA U, YAMAUCHI R, HIROTA S. Interactions of starch with a cyanidin-catechin pigment (vignacyanidin) isolated from Vigna angularis bean[J]. Food Chemistry, 2013, 141(3): 2600. DOI: 10.1016/j.foodchem.2013.04.065.
-
期刊类型引用(3)
1. 苏炀,胡华兵,王荣华,王茂芊. 不同浓度酒石酸对甜菜种子萌发的影响. 中国农学通报. 2023(30): 21-27 . 百度学术
2. 苏斌,方睿霞,高婷,熊浪,杨青松. 不同波长光照处理对青稞种子萌发的影响. 种子科技. 2022(01): 8-10 . 百度学术
3. 樊奇,任延靖,郭仙玉,孙海珊,赵孟良. 不同处理方法对菊芋种子萌发的影响. 种子. 2021(09): 86-91 . 百度学术
其他类型引用(0)