玉米大豆间作对作物根系及土壤团聚体稳定性的影响
Effect of Maize and Soybean Intercropping on Root System and Soil Aggregate Stability
-
水稻纹枯病由立枯丝核菌(Rhizoctonia solani Kühn)引起,是世界性的水稻三大病害之一[1]。随着高产、矮秆和多蘖品种的推广以及种植密度和施氮量的增加,其危害日趋严重,湖南、广东、广西、江西等地已将此病列于稻瘟病之前,目前已位居中国水稻三大病害之首[2-4]。对水稻纹枯病的研究已有近百年的历史,但迄今为止,该病在世界各水稻产区仍有不断加重的趋势,发生势头得不到有效控制,培育和种植抗病品种成为水稻生产上的迫切需要和育种者追求的主要目标。
李桦等[5]鉴定与筛选了190份粳稻品种对纹枯病抗性,其结果无一免疫品种,抗病材料6份,仅占供鉴总数的3.2%。左示敏等[6]鉴定了299份不同类群水稻品种的抗性,结果未发现免疫和高抗品种,中抗以上品种仅为36.5%。ANURATHA等[7]发现用纹枯病菌感染后的水稻可产生2种几丁质酶。有研究结果表明:MAP蛋白激酶等一些基因能够参与调节水稻与纹枯病菌等互作的调节[8]。有学者研究了水稻纹枯病发病过程中2个病程相关基因PR1和PBZ1的表达动态,发现这两个病程相关基因随着接种时间的延长,表达量明显升高[9],而RPR10b与拟斑病的大小有一定的关联,而PR1与病斑的大小没有相关性[10]。由于引起水稻纹枯病的立枯丝核菌具有强腐生性和广寄主范围,利用传统方法很难找到较高水平的抗源,给抗性研究及抗病育种带来很大的困难,因而目前国内外还未深入展开纹枯病的抗性与水稻免疫相关基因表达关系的研究。
本研究通过对4个水稻供试品种在苗期和成株期接种纹枯病菌,观察并记录发病进程、发病程度,并于接种后24 h和48 h采样提取接种部位RNA,测定8个水稻免疫相关基因的表达变化。通过对不同生育期这些相关基因的表达研究,找到抗性基因在不同水稻品种间、以及不同接种时间点的关系,初步分析这些水稻品种对供试菌株的响应属于PTI还是ETI,为抗性相关基因的合理利用提供理论基础,为后续对这些水稻抗性基因进行深入研究打下基础。
1. 材料与方法
1.1 植物材料及菌株
本试验所用水稻品种(云光14、丽江新团黑谷、云粳19和月亮谷,分别标为YG14、LTH、YJ19和YLG)、纹枯菌(R. solani AG-1 I A)均由云南农业大学杨根华教授课题组提供。
1.2 试验用主要试剂
2×Easy Taq SuperMix、DNA Marker (DL2000)、Trizol、RQ1 RNase-Free DNase、Prime Script RT reagent Kit With gDNA Eraser和DEPC(焦磷酸二乙酯)均购自全式金生物公司。
1.3 材料种植及菌株接种
水稻种植:水稻采用育秧盘单粒播种。水稻种子表面消毒(消毒过程:75%酒精浸泡30 s,3% NaClO浸泡4~5 min,最后用灭菌水冲洗3次)后在28 ℃恒温培养箱中催芽到露白,播种于温室育秧盘中。
纹枯病菌的培养:将纹枯病菌培养在PDA培养基上,培养3 d,备用。
接种:当水稻幼苗长到3~5叶期(即苗期),将幼苗种在含有纹枯菌菌丝的培养皿中(培养皿大小为90 mm),保湿,并在恒温箱中继续生长、观察并记录发病情况、采样(在接种24 h和48 h分别采样)。待温室中的水稻生长到分蘖后期到抽穗前期之间时(即成株期),将菌丝块(5 cm×1.5 cm×0.5 cm)带菌的一面紧贴在水稻叶鞘的靠下部,用灭菌水浸湿灭菌棉花,将棉花裹在接菌部位,再用封口膜缠绕2层,保持高温高湿的条件,观察并记录发病情况、采样(在接种24 h和48 h分别采样)。采回来的样品迅速用液氮速冻,标记并保存在−80 ℃冰箱中。未接种的水稻苗在相同时间点、相同条件下取样保存,作为对照。
1.4 引物设计
目的基因选用的8个水稻免疫相关基因包括病程相关基因(PR1a、PR10a、RPR10b)、几丁质受体基因(CEBiP)、几丁质酶基因(Chit1)、转录因子相关基因(WRKY53、WRKY71和NAC4)[11-15]。设计qPCR引物,内参选用管家基因β-actin,所用引物如表1所示。
表 1 实时荧光定量PCR引物表Table 1. List of primers for qPCR analysis基因名称gene name 正向引物序列(5'→3') forward primer 反向引物序列(5'→3') reverse primer PR1a GCTACGTGTTTATGCATGTATGG TCGGATTTATTCTCAGCA PBZ1/PR10a AATGAGAGCCGCAGAAATGT GGCACATAAACACAACCACAA RPR10b TCTCCGTATTGCTTCCT CACTCTCACAAAATCAAACACCA CEBiP GATGACTGGTTTATCCAGCTTTG TTCAAGCAGCCGTACAAGTG WRKY53 CCAATTTGTTGATTCGTTGC CGTACGCGTATCCCAAGTGT WRKT71 AGATGGCGATGACGCTGAC AGCAATCGTCAATCCTTGGT NAC4 AAGCGCAGCATCAACAAAG TCCATCCTTCTCCTCTCGTG Chit1 CTGGTACTGGACCAACAACG GTTCTTGCCGTCGCACTC β-actin GAGTATGATGAGTCGGGTCCAG ACACCAACAATCCCAAACAGAG 1.5 总RNA的提取和cDNA第1链的合成
RNA提取试验操作步骤参照全式金Trizol总RNA提取试剂盒(ET111-01)的说明书。利用核酸蛋白分析仪检测RNA含量及纯度。DNA的消化处理步骤参照RQ1 RNase-Free DNase 试剂说明书。根据检测结果,进行反转录合成cDNA第1链。反转录步骤参照TransScriptⅡ First-Strand cDNA Synthesis SuperMix (Trans)的说明书进行。体系为20 μL:400 ng RNA、1 μL Anchored Oligo (dT)、 10 μL 2×TSⅡReaction Mix、 1 μL TransScriptⅡRT/RI Enzyme、无RNase的水补足体积。反转录程序:将RNA模板、引物与RNase-free Water混匀,65 ℃孵育5 min后,冰浴2 min,然后再加入其他反应组分。 25 ℃孵育10 min后,42 ℃孵育反转录15 min;85 ℃加热5 s失活TrabsScript RT/RI与gDNA Remover。
1.6 实时荧光定量PCR
目的基因的PCR扩增,在冰上添加下列组分,25 μL反应体系:0.5 μL Forward Primer (10 μmol/L)、0.5 μL Reverse primer (10 μmol/L) 、 12.5 μL 2×TransStart Top Green qPCR SuperMix、 2 μL Template DNA、 9.5 μL ddH2O。反应条件:94 ℃ 30 s;94 ℃ 50 s;50~60 ℃ 15 s;72 ℃ 10 s (40~45 个循环)。
1.7 相对定量表达分析
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
2. 结果与分析
2.1 水稻纹枯病的发病过程观察
苗期接种的水稻样品在纹枯病菌接种24 h和接种48 h时都没有明显症状,直至7 d后都未观察到发病的症状(图1);成株期接种的水稻在纹枯菌接种24 h后即显现症状,在叶鞘包裹的茎的表面有棕色的线状痕迹,接种48 h时,病斑明显,并且已经扩展出了接种部位(图2a、b),对照无症状(图2c)。本研究使用的4个水稻品种中,云光14、LTH和云粳19表现为感病,月亮谷表现为中抗。
2.2 苗期和成株期接种24 h和48 h时防御相关基因表达量的比较
纹枯病菌接种苗期4个水稻品种24 h和48 h时的防御相关基因的相对表达量的情况见图3。苗期接种后,检测到个别基因有所上调,尤其是月亮谷中,上调的基因数量较多,上调的量也较大,如WRKY53和WRKY71的上调倍数都超过了50倍。丽江新团黑谷苗期的各检测基因也都有小幅上调,包括WRKY53和WRKY71,以及病程相关基因PR1a、PR10a和RPR10b。但总体来说,上调的量都很小,尤其是与成株期相比,上调的量更小。
成株期接种后,基因表达情况与苗期完全不同,不同水稻品种之间的差异也很大(图4)。总体来说,在中抗品种月亮谷中,相关基因的表达量都比较大。尤其是WRKY53和WRKY71两个信号转导的相关基因,接种后24 h的表达量分别达到2 384倍和2 770倍。这些结果表明:这2个信号相关基因的表达可能与水稻品种的抗性有着重要的作用。此外,2个与基础防卫相关的基因CEBiP和Chit1的表达量也大幅提高。表明基础防卫反应对月亮谷的成株期抗性也起着一定的作用。
3. 讨论
水稻纹枯病抗性的相关遗传研究,与稻瘟病、白叶枯病等其他水稻重要病害相比都相对较少[17]。一方面是由于水稻品种资源中缺乏高抗的品种,另一方面也与纹枯病的抗性鉴定需要的周期较长有关[6]。随着纹枯病在中国及东南亚国家的不断加重,系统研究水稻与丝核菌的互作机制,为培育和利用抗病品种提供理论依据与技术措施,是生产上亟待解决的问题[17]。本研究从近年水稻免疫的相关研究结果[13-14]中挑选出8个关键节点上的基因,对4个水稻品种在苗期和成株期2个生育时期进行纹枯病菌接种24 h和48 h后的表达分析。结果表明:水稻苗期对纹枯病菌表现不敏感,而成株期较为敏感,意味着水稻对纹枯病菌的抗性可能存在着一个受水稻发育时期调控的开关基因,该基因在水稻苗期处于关闭状态,因此免疫相关的基因,包括病原相关分子模式诱导的免疫(PTI)和效应蛋白诱导的免疫(ETI)都未启动。此时个别免疫相关的基因可能受到病原菌的细胞壁或是其他次要致病分子的刺激从而少量变化。水稻生长至成株期后,该基因转换为启动模式,能够接收到纹枯病菌的主要互作因子,并激活水稻免疫相关的信号转导系统及其下游的病程相关基因。但可能由于纹枯病菌的致病因子十分强烈,在本研究使用的材料范围内,这些被激活的免疫路径都不足以完全抵御纹枯病菌的侵染,导致病害发生(图5)。图5是根据本研究及前人的相关研究提出的水稻与纹枯病菌在苗期和成株期互作中的水杨酸(SA)信号、WRKY转录因子及病程相关基因的互作模式图。图中的开关基因表示受到生育期调控的关键控制因子,也可能是纹枯病抗性的负调控因子的影响,如果能够从遗传上找到该因子,通过该因子的有效调控(如增强正向的调控因子,或敲除抑制负的调控因子),就有希望提高水稻对纹枯病的抗性。
本研究结果表明:与信号转导相关的WRKY53和WRKY71两个信号转导的相关基因,不论是苗期或是成株期,在抗性品种与感病品种中的表达差异极为显著,而且与基础抗性相关的2个基因和与病程相关的基因都表现出较好的共表达模式。因此,可作为水稻与纹枯病菌互作过程中的标记,通过其表达模式的检测,从而判断水稻的免疫路径是否被激活。由于在水稻与稻瘟病菌的互作关系中,PR1和RPR10b都属于水杨酸介导的植物系统性获得抗性(systemic acquired resistance)途径中的重要病程相关蛋白,因此,本研究中检测到的这2个基因在成株期的上调,意味着水稻对纹枯病菌的抗性反应也受到水杨酸途径控制(图5)。在将来的研究中,需要系统分析水稻对纹枯病菌的抗性组分,尤其是在互作过程中发挥关键作用的调控基因,可为抗性基因的合理利用、水稻抗病品种的培育、预防纹枯病的开发和进一步研究提供理论基础。
-
图 1 不同种植模式下玉米各生育期土壤团聚体稳定性的变化
注:R0.25. >0.25 mm 团聚体百分含量;MWD. 平均质量直径;GMD. 几何平均直径;D. 土壤分形维数;不同小写字母代表各处理间差异显著(P<0.05);下同。
Figure 1. Changes in soil aggregate stability of maize at growth periods under different planting patterns
Note: R0.25. percentage content of aggregate greater than 0.25 mm; MWD. mean weight diameter; GMD. geometric mean diameter; D. the fractal dimension; different lowercases mean significant difference (P<0.05); the same as below.
表 1 不同种植模式下各生育期玉米根系形态变化
Table 1 Changes in root morphology of maize at growth periods under different planting patterns
生育期
growth period种植方式
planting pattern根干质量/g
root dry weight总根长/m
root length总根表面积/ cm2
root surface area根平均直径/ mm
average root diameter总根体积/ cm3
root volume喇叭口期
bell-mouthed period单作 monoculture 4.55±0.60 b 3.26±0.14 b 795.44±84.74 a 0.74±0.05 a 17.70±0.95 a 间作 intercropping 6.36±0.35 a 4.56±0.12 a 935.82±46.66 a 0.86±0.06 a 19.36±1.44 a 抽雄期
tasseling period单作 monoculture 13.71±1.04 b 9.78±0.71 b 3 271.93±133.72 b 1.08±0.06 a 96.11±13.70 a 间作 intercropping 15.79±0.33 a 15.50±1.07 a 4 766.15±750.17 a 0.93±0.02 b 115.27±5.20 a 成熟期
mature period单作 monoculture 22.08±1.01 b 17.45±0.43 b 5 974.07±290.98 b 1.22±0.04 a 168.01±7.76 b 间作 intercropping 25.40±0.75 a 24.16±0.60 a 7 893.27±141.64 a 1.07±0.04 b 251.77±15.01 a 注:不同小写字母代表各处理间差异显著(P<0.05);下同。
Note: Different lowercases mean significant difference (P<0.05); the same as below.表 2 不同种植模式下各生育期大豆根系形态变化
Table 2 Changes in root morphology of soybean at growth periods under different planting patterns
生育期
growth period种植方式
planting pattern根干质量/g
root dry weight总根长/m
root length总根表面积/cm2
root surface area根平均直径/mm
average root diameter总根体积/cm3
root volume分枝期
branching period单作 monoculture 3.64±0.52 a 1.10±0.12 b 270.41±8.26 b 0.69±0.05 a 6.39±0.30 b 间作 intercropping 4.58±0.44 a 1.55±0.12 a 344.24±19.18 a 0.68±0.13 a 7.61±0.68 a 结荚期
podding period单作 monoculture 8.52±0.44 b 1.33±0.06 b 363.12±4.13 b 0.91±0.02 a 8.37±0.48 b 间作 intercropping 9.99±0.03 a 2.18±0.14 a 560.36±34.45 a 0.83±0.03 b 11.95±0.75 a 成熟期
mature period单作 monoculture 15.62±0.73 b 3.79±0.15 b 691.19±7.99 b 0.94±0.04 a 30.26±1.37 b 间作 intercropping 17.97±0.03 a 4.99±0.26 a 969.66±86.84 a 0.86±0.03 a 36.19±1.55 a 表 3 不同种植模式下各生育期玉米根系分泌物变化
Table 3 Changes in root exudates of maize at growth periods under different planting patterns
mg/株 生育期 growth period 种植方式 planting pattern 总糖含量 total sugar content 总有机酸含量 total organic acid content 喇叭口期
bell-mouthed period单作 monoculture 2.17±0.16 a 11.57±1.56 b 间作 intercropping 2.40±0.40 a 15.44±1.27 a 抽雄期
tasseling period单作 monoculture 6.88±0.18 b 22.85±1.03 b 间作 intercropping 9.24±1.26 a 26.43±2.01 a 成熟期
mature period单作 monoculture 3.91±0.59 b 16.91±0.19 b 间作intercropping 6.59±0.43 a 19.45±0.90 a 表 4 不同种植模式下各生育期大豆根系分泌物变化
Table 4 Changes in root exudates of soybean at growth periods under different planting patterns
mg/株 生育期 growth period 种植方式 planting pattern 总糖含量 total sugar content 总有机酸含量 total organic acid content 分枝期
branching period单作 monoculture 0.54±0.04 b 1.13±0.01 b 间作 intercropping 0.82±0.12 a 1.74±0.17 a 结荚期
podding period单作 monoculture 1.29±0.07 b 6.57±0.73 b 间作 intercropping 1.77±0.27 a 8.42±0.79 a 成熟期
mature period单作 monoculture 1.02±0.11 a 4.32±1.52 a 间作 intercropping 1.35±0.24 a 4.87±1.14 a 表 5 玉米根系特征、根系分泌物与土壤团聚体稳定性指标的相关性
Table 5 Correlation of maize root characteristics, root exudates and soil aggregates
项目
item根干质量
root dry weight总根长
root length总根表面积
root surface area根平均直径
average root diameter总根体积
root volume总糖含量
total sugar content总有机酸含量
total organic acid contentR0.25 0.896** 0.903** 0.907** 0.712** 0.877** 0.825** 0.769** MWD 0.979** 0.964** 0.965** 0.798** 0.956** 0.621** 0.552** GMD 0.968** 0.960** 0.971** 0.784** 0.955** 0.696** 0.620** D −0.961** −0.956** −0.967** −0.785** −0.947** −0.703** −0.640** 注:“**”表示在0.01 水平上极显著相关 (P<0.01);下同。
Note: “**” indicates extremely significant correlation at the 0.01 level; the same as below.表 6 大豆根系特征、根系分泌物与土壤团聚体稳定性指标相关性
Table 6 Correlation of soybean root characteristics, root exudates and soil aggregates
项目 item 根干质量
root dry weight总根长
root length总根表面积
root surface area根平均直径
average root diameter总根体积
root volume总糖含量
total sugar content总有机酸含量
total organic acid contentR0.25 0.888** 0.754** 0.842** 0.740** 0.726** 0.803** 0.768** MWD 0.959** 0.853** 0.890** 0.722** 0.853** 0.651** 0.606** GMD 0.931** 0.820** 0.886** 0.732** 0.799** 0.730** 0.684** D −0.937** −0.839** −0.904** −0.717** −0.817** −0.693** −0.668** -
[1] WILLEY R W. Resource use in intercropping systems[J]. Agricultural Water Management, 1990, 17(1): 215. DOI: 10.1016/0378-3774(90)90069-B.
[2] RUSINAMHODZI L, CORBEELS M, NYAMANGARA J, et al. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique[J]. Field Crops Research, 2012, 136(5): 12. DOI: 10.1016/j.fcr.2012.07.014.
[3] KERMAH M, FRANKE A C, ADJEI-NSIAH S, et al. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of Northern Ghana[J]. Field Crops Research, 2017, 213: 38. DOI: 10.1016/j.fcr.2017.07.008.
[4] GITARI H I, KARANJA N N, GACHENE C K K, et al. Nitrogen and phosphorous uptake by potato (Solanum tuberosum, L.) and their use efficiency under potato-legume intercropping systems[J]. Field Crops Research, 2018, 222: 78. DOI: 10.1016/j.fcr.2018.03.019.
[5] GAO Y, WU P T, ZHAO X N, et al. Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of Northwestern China[J]. Field Crops Research, 2014, 167(5): 19. DOI: 10.1016/j.fcr.2014.07.003.
[6] WORKU W. Sequential intercropping of common bean and mung bean with maize in southern ethiopia[J]. Experimental Agriculture, 2014, 50(1): 90. DOI: 10.1017/S0014479713000434.
[7] TANG X Y, BERNARD L, BRAUMAN A, et al. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions[J]. Soil Biology and Biochemistry, 2014, 75: 86. DOI: 10.1016/j.soilbio.2014.04.001.
[8] LATATI M , BARGAZ A, BELARBI B, et al. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability[J]. European Journal of Agronomy, 2016, 72: 80. DOI: 10.1016/j.eja.2015.09.015.
[9] DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review[J]. Agriculture, Ecosystems & Environment, 2017, 240: 148. DOI: 10.j.agee.2017.02.019.
[10] BLANKINSHIP J C, FONTE S J, SIX J, et al. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem[J]. Geoderma, 2016, 272: 39. DOI: 10.1016/j.geoderma.2016.03.008.
[11] MARDHIAH U, CARUSO T, GURNELL A, et al. Just a matter of time: fungi and roots significantly and rapidly aggregate soil over four decades along the Tagliamento River, NE Italy[J]. Soil Biology and Biochemistry, 2014, 75: 133. DOI: 10.1016/j.soilbio.2014.04.012.
[12] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 2004, 79(1): 7. DOI: 10.1016/j.still.2004.03.008.
[13] SHI S J, RICHARDSON A E, O'CALLAGHAN M, et al. Effects of selected root exudate components on soil bacterial communities[J]. FEMS Microbiology Ecology, 2011, 77(3): 600. DOI: 10.1111/j.1574-6941.2011.01150.x.
[14] 杨培岭, 罗运培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896. [15] LU J, ZHENG F L, LI G F, et al. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China[J]. Soil and Tillage Research, 2016, 161: 79. DOI: 10.1016/j.still.2016.04.002.
[16] PAUL B K, VANLAUWE B, AYUKE F, et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity[J]. Agriculture, Ecosystems & Environment, 2013, 164: 14. DOI: 10.1016/j.agee.2012.10.003.
[17] FOKOM R, ADAMOU S, TEUGWA M C, et al. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon[J]. Soil and Tillage Research, 2012, 120: 69. DOI: 10.1016/j.still.2011.11.004.
[18] GAO Y, DUAN A W, QIU X Q, et al. Distribution of roots and root length density in a maize/soybean strip intercropping system[J]. Agricultural Water Management, 2010, 98(1): 199. DOI: 10.1016/j.agwat.2010.08.021.
[19] LYU Y, FRANCIS C, WU P T, et al. Maize-soybean intercropping interactions above and below ground[J]. Crop Science, 2014, 54(3): 914. DOI: 10.2135/cropsci2013.06.0403.
[20] 赵财, 周海燕, 柴强, 等. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应[J]. 草业学报, 2014, 23(2): 133. DOI: 10.11686/cyxb20140216. [21] 李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响[J]. 生态学报, 2011, 31(6): 1617. [22] EISENHAUER N, LANOUE A, STRECKER T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J]. Scientific Reports, 2017, 7: 44641. DOI: 10.1038/srep44641.
[23] ERKTAN A, CÉCILLON L, GRAF F. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics[J]. Plant and Soil, 2016, 398(1/2): 121. DOI: 10.1007/s11104-015-2647-6.
[24] PÉRÈS G, CLUZEAU D, MENASSERI S, et al. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient[J]. Plant and Soil, 2013, 273: 285. DOI: 10.1007/s11104-013-1791-0.
[25] GRYZE S D, SIX J, BRITS C, et al. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture[J]. Soil Biology and Biochemistry, 2005, 37(1): 55. DOI: 10.1016/j.soilbio.2004.07.024.
[26] SPOHN M, GIANI L. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils[J]. Soil Biology & Biochemistry, 2010, 42(9): 1505. DOI: 10.1016/j.soilbio.2010.05.015.
[27] 吕渡, 杨亚辉, 赵文慧, 等. 不同恢复类型植被细根分布及与土壤理化性质的耦合[J]. 生态学报, 2018, 38(11): 3979. DOI: 10.5846/stxb201709021585. -
期刊类型引用(0)
其他类型引用(3)