• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

外源氨基酸对拟南芥EBP1蛋白质合成影响的初步分析

李婷婷, 宋丽梅, 于峰

李婷婷, 宋丽梅, 于峰. 外源氨基酸对拟南芥EBP1蛋白质合成影响的初步分析[J]. 云南农业大学学报(自然科学), 2020, 35(4): 553-561. DOI: 10.12101/j.issn.1004-390X(n).201912008
引用本文: 李婷婷, 宋丽梅, 于峰. 外源氨基酸对拟南芥EBP1蛋白质合成影响的初步分析[J]. 云南农业大学学报(自然科学), 2020, 35(4): 553-561. DOI: 10.12101/j.issn.1004-390X(n).201912008
Tingting LI, Limei SONG, Feng YU. Preliminary Analysis of the Effect of Exogenous Amino Acids on the Synthesis of EBP1 Protein in Arabidopsis thaliana[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 553-561. DOI: 10.12101/j.issn.1004-390X(n).201912008
Citation: Tingting LI, Limei SONG, Feng YU. Preliminary Analysis of the Effect of Exogenous Amino Acids on the Synthesis of EBP1 Protein in Arabidopsis thaliana[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 553-561. DOI: 10.12101/j.issn.1004-390X(n).201912008

外源氨基酸对拟南芥EBP1蛋白质合成影响的初步分析

基金项目: 国家自然科学基金面上项目(31871396,31571444,31900232);国家自然科学基金青年项目(31400232)
详细信息
    作者简介:

    #对本文贡献等同,为并列第一作者。李婷婷(1995—),女,湖南娄底人,在读硕士研究生,主要从事植物分子生物学研究。E-mail:1040942853@qq.com

    宋丽梅(1988—),女,山东潍坊人,博士后,助理教授,主要从事植物分子信号转导研究。E-mail:songlimei@hnu.edu.cn

    通信作者:

    于峰(1984—),男,湖南永州人,博士,教授,主要从事植物分子信号转导研究。E-mail:feng_yu@hnu.edu.cn

  • 中图分类号: Q 591.2

摘要:
目的探讨植物吸收外源氨基酸的种类以及这些氨基酸对植物体内EBP1蛋白质合成的影响。
方法本研究建立如下体系:在缺氮培养基中,分别添加16种终浓度为3 mmol/L的氨基酸来处理拟南芥Col-0。用可以恢复Col-0缺氮表型的氨基酸处理35S::EBP1-GFP报告植物后,观察荧光信号并结合核糖体提取及蛋白质印迹法 (Western-blot) 检测EBP1在mRNA及蛋白水平的表达。
结果精氨酸、丙氨酸、天冬酰胺、谷氨酰胺、天冬氨酸和甘氨酸等6种氨基酸可以恢复Col-0的缺氮表型,同时也表明建立的体系切实可行。荧光观察试验表明:甘氨酸、丙氨酸、精氨酸和谷氨酰胺能促进35S::EBP1-GFP的荧光积累;核糖体提取试验表明:精氨酸、丙氨酸和甘氨酸能在翻译层面促进EBP1的蛋白质积累。Western-blot试验表明:丙氨酸和谷氨酰胺在蛋白水平上促进EBP1蛋白质的积累。
结论精氨酸、丙氨酸、天冬酰胺、谷氨酰胺、天冬氨酸和甘氨酸可作为潜在的有机氮源供植物吸收利用,丙氨酸能同时在翻译和蛋白质层面促进EBP1的蛋白质积累。氨基酸被植物吸收后通过影响植物体内蛋白质的合成影响植物的生长发育。

 

Preliminary Analysis of the Effect of Exogenous Amino Acids on the Synthesis of EBP1 Protein in Arabidopsis thaliana

Abstract:
Purpose To investigate the types of exogenous amino acids absorbed by plants and the effect of these amino acids on the synthesis of EBP1 protein in plants.
Method We established the following system, Col-0 were grown on the 1/2 nitrogen deficient medium amended with 16 kinds of amino acids (3 mmol/L), respectively. Then, we treated the report plant 35S::EBP1-GFP with the amino acids which could be used as potential organic nitrogen sources to observe their fluorescence signals and combined with ribosome extraction essay and Western-blot essay to detect the expression of EBP1 in mRNA level and protein level, respectively.
Result There were the kinds of amino acids including arginine, alanine, asparagine, glutamine, asparagine and asparagine which could be used as potential organic nitrogen sources. It also showed that the established system was feasible. The fluorescence observation essay showed that glycine, alanine, arginine and glutarnine could promote the fluorescence signals of 35S::EBP1-GFP; the ribosome extraction essay showed that glycine, alanine and arginine significantly promoted the mRNA expression of EBP1; and the Western-blot essay showed that alanine and glutarnine promoted the accumulation of EBP1 protein at the protein level.
Conclusion Arginine, alanine, asparagine, glutamine, aspartic acid and glycine can be used as potential organic nitrogen sources for plant absorption and utilization. Moreover, alanine can promote the protein accumulation of EBP1 at the mRNA and protein levels. Exogenous amino acids regulate the growth and development of plants by affecting proteins synthesis.

 

  • 白及[Bletilla striata (Thunb. ex A. Murray) Rchb. f.]为兰科(Orchidaceae)白及属(BletillaRchb.f.)地生植物,主要分布于贵州、云南、四川等省,在长江流域及其以南各省区亦有分布[1]。据目前报道白及属植物约有6种,主要分布于缅甸北部经中国至日本。中国主产4种,分别为华白及(B. sinensis)、黄花白及(B. ochraceaSchhr.)、小白及[(B. formosana(Hayata) Schhr.)]和白及(B. striata),分布于北起江苏、河南,南至台湾,东起浙江,西至西藏东南部[2]。据GUAN等[3]研究表明:中国目前利用各种色谱技术已从白及块茎中分离得到17种化合物,有广泛的药用价值及园林价值。白及块茎具有收敛止血、消肿生肌、清热利湿的功效,用于治疗咯血、外伤出血、疮疡肿毒、皮肤皲裂等症状[3-4];其花色丰富,端庄典雅,有白色、粉色和蓝色等多种色调[5],被誉为“中国洋兰”,具有很高的观赏价值,常用于花径、花坛及林下的地被植物等。魏进等[6]报道白及常见的病害有茎腐病(Tubercularia abutilonisKatsura)、根腐烂病(Helicobasidium albicans)、叶褐斑病(Sphaeropsis cruenta)、叶斑灰霉病(Botytis cinerea)。本研究于白及病害样品中鉴定出的黑轮层炭壳菌(Daldinia consentrica),不但影响白及的药用价值和观赏价值,而且会削弱长势,严重时则导致白及枯死,造成重大经济损失和药用价值。本研究旨在确定云南省富宁县白及植株上的病害,对其病原进行分离鉴定,明确其分类地位,以期为探索该病害的防治措施提供理论依据。

    2016年9月10日,从云南富宁采集白及发病植株以及健康白及植株若干,带回实验室进行病原菌的分离和纯化。选取病叶,切取病健交界处的组织用无菌水冲洗3次,随后在75%乙醇中表面消毒3~5 min,最后再用无菌水冲洗3次,放在灭菌的滤纸上吸干水分,然后剪成约5.0 mm×5.0 mm的组织块,置于马铃薯葡萄糖琼脂培养基(PDA)平板上,在28 ℃恒温培养箱中培养3~4 d后,挑取菌落边缘的菌丝转接培养、纯化。另外,取健康植株外植体进行组织培养,为后续的回接试验做准备。

    将供试菌株在PDA平板上活化培养7~8 d后,用无菌的、直径为5.0 mm的打孔器打取菌饼。选取温室种植10个月的健康白及,用灭菌小刀将白及嫩叶表皮轻微划2个伤口,把菌饼正面贴向伤口,用已浸湿无菌水的无菌脱脂棉保湿。试验设置3次重复,PDA作为空白对照,跟踪观察致病结果并做好记录,若发病,则对病斑再进行组织分离,分离得到与原始接种菌株培养特征一致的菌株则可确定为该病的病原菌。

    将分离获得的病原菌接种在PDA平板上培养3 d后,进行菌落形态观察和显微形态鉴定,具体方法参照《中国真菌志》[7]以及《真菌鉴定手册》[8]。之后将菌株接种到马铃薯葡萄糖琼脂培养基(PSA培养基有利于产生孢子),置于28 ℃培养箱中,培养7 d后待菌丝布满整个培养基之后,采取两种方法进行光学显微镜观察病原菌孢子形态特征。方法一:常规观察,即挑取适量菌丝于载玻片上,具体制片流程参照《微生物学实验》(第4版);方法二:快速徒手切片观察,直接取病原菌组织进行培养,具体操作方法参照张书敏等[9]的方法,略有改进。

    对在28 ℃恒温条件下于PSA平板上纯化培养7 d的病原菌进行真菌总DNA提取,具体方法参考文献[10-11]的方法。利用真菌扩增通用引物对扩增提取的病原菌rDNA的ITS区。ITS1:5'- TCCGTAGGTGAACCTGCGG-3';ITS4:5'-TCCTCCGCTTATTGATATGC-3'。

    采用2×Power Taq PCR MasterMix试剂盒进行PCR扩增,其反应总体系为50 μL:11 μL DNA模板,2×Power Taq PCR MasterMix酶25 μL,1对引物ITS1/4 (10 mmol/μL)各2 μL,ddH2O 10 μL。PCR扩增程序:94 ℃预变性3 min;94 ℃变性40 s;55 ℃退火40 s;72 ℃延伸1 min,共30个循环;72 ℃保温10 min,PCR产物于4℃暂时保存,取出后,放于−20 ℃保存。取3 μL PCR产物进行1.5%琼脂糖凝胶电泳(100 V,37 min),检测,将符合预期大小片段的PCR产物条带纯化,委托铂尚生物技术(上海)有限公司完成测序。用Bioedit软件和BLAST进行多序列比对分析,提交序列至GenBank。

    将测序之后的序列输入NCBI数据库,进行BLAST比对,在GenBank数据库中下载同源性较高的7个菌株核苷酸序列,采用Bioedit软件进行多序列比对,将已下载的菌株序列与黑轮层炭壳菌进行核苷酸序列同源性分析。

    该病原菌主要危害白及叶缘和叶尖,侵染初期,主要表现为叶片失绿发黄,表面干枯。侵染中后期,叶片失去水分和养分,由边缘向中间逐渐形成黑色轮层,形似被火烧过一般(图1)。

    图  1  富宁白及叶部黑轮层炭壳菌的危害症状
    注:红色箭头指向是明显病害症状。
    Figure  1.  Symptoms of D. consentricaon B. striata from Funing
    Note: The red arrow is pointing to the obvious symptoms of disease.

    通过对感病样品的分离和纯培养,获得菌株BJ-HLCTK,在回接试验中,该菌在白及叶片上再次发病,接种后每天进行形态观察并记录相关症状变化情况,持续观察10 d左右,发现此症状与之前采样的白及病症一致(图2)。

    图  2  温室白及接种发病症状图
    Figure  2.  Symptom caused by the inoculated fungus onB. striata in greenhouse

    初期菌落生长较慢,近圆形,较整齐,正面深灰色至灰白色,贴基生长,气生菌丝生长较慢,呈绒毛状;背面中间呈现黑褐色,边缘灰白色,培养后期菌丝黑褐色,有同心轮纹(图3),无异味,生长速度7.92~9.84 mm/d。

    图  3  病原菌菌菌落形态特征
    Figure  3.  Morphology of colonies characteristics

    在光学显微镜下观察菌丝、孢子形态,结果显示:菌丝体具隔膜,有分支,宽9~20 μm,平均宽13 μm (图4)。轮层炭壳属真菌因子座相对较大,子座内部具深浅不同的轮纹,易于鉴定。接种发病的白及叶片组织徒手切片观察,发现孢子不等边椭圆形或肾脏形,大小11~16 μm×6~9 μm (图5)。

    图  4  病原菌菌丝特征(×40)
    Figure  4.  Microscopic characteristics of hyphal structure of pathogenic fungi
    图  5  病原菌孢子特征(×40)
    注:红色箭头指向部分是孢子。
    Figure  5.  Microscopic characteristics of spore of pathogenic fungi
    Note: The red arrows point to the spores.

    BJ-HLCTK经扩增获得片段大小为575 bp,登录号KR154932,与相关分离物在相应区域进行核苷酸序列同源性分析(表1)表明:BJ-HLCTK与序列登录号为KC895542的D. eschscholtzii相似度达97.1%;与序列登录号为GU066682Daldinia sp.的核苷酸序列同源性为96.8% (表2)。

    表  1  用于同源性分析的相关菌株信息
    Table  1.  Information about the related strains used for homology analysis
    登录号
    accession No.
    菌株
    strain
    来源
    origin
    KU571495 Daldiniasp. 印度India
    KC895542 Daldinia eschscholtzii 巴布亚新几内亚
    Papua New Guinea
    马来西亚 Malaysia
    KR016835 fungal endophyte
    GU066682 Daldinia sp.
    GU222391 Daldinia eschscholzii
    KT355731 Daldinia sp. 印度India
    KU317718 Daldinia eschscholtzii 中国China
    下载: 导出CSV 
    | 显示表格
    表  2  相关菌株相应区域核苷酸序列同源性比较
    Table  2.  Comparison of nucleotide sequence homology of related strains
    序列 sequence LCTK KC895542 KU571495 KR016835 GU066682 GU222391 KT355731 KU317718
    BJ-HLCTK 97.1 95.2 59.6 96.8 94 92.2 96.7
    KC895542 97.1 97 60.7 94.9 95.6 93.6 95.1
    KU571495 95.2 97 63.1 97.2 95.9 96.5 94.4
    KR016835 59.6 60.7 63.1 63.4 60.9 63.2 59.1
    GU066682 96.8 94.9 97.2 63.4 94.6 98.1 91.3
    GU222391 94 95.6 95.9 60.9 94.6 93.6 93.1
    KT355731 92.2 93.6 96.5 63.2 98.1 93.6 91.1
    KU317718 96.7 95.1 94.4 59.1 91.3 93.1 91.1
    下载: 导出CSV 
    | 显示表格

    近年来,由于白及巨大的药用价值和市场需求,其栽培模式多样化,导致病原菌基数连年加大。目前发现该病原菌对云南富宁地区白及种植危害严重,造成品质和产量下降,导致大面积减产。

    本研究通过对白及病原菌的分离和纯化,依据病原菌菌落和菌株显微形态观察,再结合分子鉴定,最后初步确定引起白及叶片碳化的病原分类地位,即该病原菌为轮层炭壳菌属,与黑轮层炭壳菌(D. onsentrica)最为接近。该菌系炭角菌目(Xylaria)、炭角菌科(Xylariaceae)、轮层炭壳属(Daldinia)[12]。据有关研究表明:黑轮层炭壳菌含有酮类色素——轮层炭壳酮Daldinones A和B[13]。另外,STADLER等[14]和尤雅等[15]发现:黑轮层炭壳菌(D. concentrica)存在三萜类化合物,也有相关报道该菌分泌1种新型联萘和3种新型的二苯甲酮衍生物抑制植物生长活性[16]。本研究首次从兰科植物白及上分离到轮层炭壳菌属真菌,并经致病性验证初步确认其分类地位。该属真菌主要危害多种阔叶树种,如白蜡树、山毛榉、枫树等,其树枝被害木质部形成杂斑腐朽,是木材腐朽菌之一[17-18]。本研究首次报道该病原真菌侵染白及。

  • 图  1   拟南芥对不同氨基酸的响应

    注:a)不同氨基酸处理拟南芥Col-0表型;b)~d)不同氨基酸处理下,Col-0的鲜质量、干质量及叶绿素含量。数据以mean±SD (n=3)表示,统计学方法为one-way ANOVA (单因素方差分析),*P<0.05,**P<0.01,***P<0.001,ns表示无显著性差异;下同。

    Figure  1.   Response of exogenous amino acids in Arabidopsis

    Note: a) bhenotypic analysis of Arabidopsis Col-0 treatment with different amino acid; b)-d) the relative fresh weight, relative dry weight and chlorophyll content of different genotypes grown under different amino acids. Values are means±SD (n=3) from three independent experiments. Asterisks above bars indicate significant differences using one-way ANOVA, * P<0.05, ** P<0.01, ***P<0.001, ns showed no significant difference; the same as below.

    图  2   氨基酸对Col-0根系的影响

    注:a)不同氨基酸处理下的根长表型;b)根长统计。

    Figure  2.   Effect of amino acids on the root length in Col-0

    Note: a) root length phenotypic analysis of Arabidopsis Col-0 treatment with different amino acids; b) the statistics of root length.

    图  3   氨基酸诱导35S::EBP1-GFP

    注:a)-e)白色方框放大部位。所有荧光图片均采用相同参数进行激光共聚焦扫描。

    Figure  3.   Amino acid induced35S::EBP1-GFP

    Note: a)-e) the enlarged part of the white box. All the fluorescence images were scanned with the same parameters.

    图  4   Ala、Arg和Gly调节EBP1 mRNA的翻译效率

    注:a)-c) Gly、Gln、Arg和Ala处理拟南芥Col-0,各核糖体组分在A260 nm处的吸光度值曲线。核糖体40S、80S以及多聚核糖体(polysomes)已在图中标记;e)-h) qRT-PCR检测各处理组多聚核糖体组分中EBP1的mRNA含量。β-actin用作内参基因。

    Figure  4.   Translation efficiency of EBP1 mRNA regulated by Ala, Arg and Gly

    Note: a)-c) Arabidopsis Col-0 treated with Gly, Gln, Arg and Ala, the absorbance curve of each ribosome component at A260 nm. 40S, 80S and polyribosome components are shown in the diagram; e)-h) qRT PCR was used to detect the mRNA of EBP1 in the polyribosome components of each treatment group. β-actin is used as a reference gene.

    图  5   氨基酸对EBP1蛋白的影响

    注:a) EBP1蛋白量,以β-actin作为内参;b)利用image J软件对图5a条带的灰度值测定。

    Figure  5.   Effect of amino acids on EBP1 protein

    Note: a) EBP1 protein was detected, and β-actin was used as reference protein; b) ImageJ was used to measure the gray value of Fig.5a.

    表  1   16种氨基酸

    Table  1   The list of 16 amino acids

    名称
    Chinese name
    英文缩写
    abbreviation
    名称
    Chinese name
    英文缩写
    abbreviation
    丙氨酸Ala组氨酸His
    精氨酸Arg异亮氨酸Ile
    天冬酰胺Asn亮氨酸Leu
    天冬氨酸Asp赖氨酸Lys
    半胱氨酸Cys蛋氨酸Met
    谷氨酰胺Gln脯氨酸Pro
    谷氨酸Glu苏氨酸Thr
    甘氨酸Gly缬氨酸Val
    下载: 导出CSV
  • [1]

    EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1): 9. DOI: 10.1007/BF00377192.

    [2]

    MEI H S, THIMANN K V. The relation between nitrogen deficiency and leaf senescence[J]. Physiology Plant, 1984, 62: 157. DOI: 10.1111/j.1399-3054.1984.tb00364.x.

    [3]

    NÄSHOLM T, EKBLAD A, NORDIN A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392(6679): 914. DOI: 10.1038/31921.

    [4]

    VIRTANEN A I, LINKOLA H. Organic nitrogen compounds as nitrogen nutrition for higher plants[J]. Nature, 1946, 158: 515. DOI: 10.1038/158515a0.

    [5]

    WRIGHT D E. Amino acid uptake by plant roots[J]. Archives of Biochemistry and Biophysics, 1962, 97(1): 174. DOI: 10.1016/0003-9861(62)90061-9.

    [6]

    FORSUM O, SVENNERSTAM H, GANETEG U, et al. Capacities and constraints of amino acid utilization in Arabidopsis[J]. New Phytologist, 2008, 179(4): 1058. DOI: 10.1111/j.1469-8137.2008.02546.x.

    [7]

    PERSSON J, NÄSHOLM T. Amino acid uptake: a widespread ability among boreal forest plants[J]. Ecology Letters, 2008, 4(5): 434. DOI: 10.1046/j.1461-0248.2001.00260.x.

    [8]

    SHOBERT C, KOMOR E. Amino acid uptake by Ricinus communis roots: characterization and physiological significance[J]. Plant Cell and Environment, 2006, 10(6): 493. DOI: 10.1111/j.1365-3040.1987.tb01827.x.

    [9]

    THEODORE K, DAVID A, RUSSELL K, et al. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle[J]. Oecologia, 1996, 108(3): 488. DOI: 10.1007/bf00333725.

    [10]

    NÄSHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants[J]. New Phytologist, 2009, 182(1): 31. DOI: 10.1111/j.1469-8137.2008.02751.x.

    [11]

    STRIBLEY D P, READ D J. The biology of mycorrhiza in the Ericaceae. VII: the relationship between mycorrhizal infection and the capacity to utilise simple and complex organic nitrogen sources[J]. New Phytologist, 1980, 86: 365. DOI: 10.1111/j.1469-8137.1980.tb01677.x.

    [12]

    TURNBULL M H, GOODALL R, STEWART G R. The impact of mycorrhizal colonisation upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis hill ex maiden and Eucalyptis maculata hook[J]. Plant, Cell & Environment, 1995, 18: 1386. DOI: 10.1111/j.1365-3040.1995.tb00199.x.

    [13]

    BONNER C A, RODRIGUES A M, MILLER J A, et al. Amino acids are general growth inhibitors of Nicotiana silvestris in tissue culture[J]. Physiologia Plantarum, 2006, 84(3): 319. DOI: 10.1111/j.1399-3054.1992.b04671.xt.

    [14]

    BONNER C A, WILLIAMS D S, ALDRICH H C, et al. Antagonism by L-glutamine of toxicity and growth inhibition caused by other amino acids in suspension cultures of Nicotiana silvestris[J]. Plant Science (Shannon), 1996, 113(1): 43. DOI: 10.1016/0168-9452(95)04284-9.

    [15]

    BONNER C A, JENSEN R A. Recognition of specific patterns of amino acid inhibition of growth in higher plants, uncomplicated by glutamine-reversible ‘general amino acid inhibition’[J]. Plant Science, 1997, 130(2): 133. DOI: 10.1016/S0168-9452(97)00213-6.

    [16]

    BOLLARD E G. A comparative study of the ability of organic nitrogenous compounds to serve as sole sources of nitrogen for the growth of plants[J]. Plant and Soil, 1966, 25(2): 153. DOI: 10.1007/BF01347815.

    [17]

    EPSTEIN E, BLOOM J A. Mineral nutrition in plants: principles and perspectives[M]. 2nd ed. Sunderland, Mass: Sinauer Associates, 2005.

    [18]

    HUA Z, KRYSTYNA M M, MARTINDALE J L, et al. Post-transcriptional regulation of androgen receptor mRNA by an ErbB3 binding protein 1 in prostate cancer[J]. Nucleic Acids Research, 2010, 38(11): 3619. DOI: 10.1093/nar/gkq084.

    [19]

    HORVΆTH B M, MAGYAR Z, ZHANG Y, et al. EBP1 regulates organ size through cell growth and proliferation in plants[J]. European Molecular Biology Organization Journal, 2006, 25(20): 4909. DOI: 10.1038/sj.emboj.7601362.

    [20]

    LI C Y, LIU X M, QIANG X N, et al. EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling[J]. PLoS Biology, 2018, 16(10): e2006340. DOI: 10.1371/journal.pbio.2006340.

    [21]

    LICHTENTTHALER H K. Chlorophyll and carotenoids: pigments of photosynthetic membranes[J]. Methods Enzymol, 1987, 148: 350. DOI: 10.1016/0076-6879(87)48036-1.

    [22]

    LI W, MA M, FENG Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163: 670. DOI: 10.1016/j.cell.2015.09.037.

    [23]

    HUTCHINGS M J. The effects of environmental heterogeneity on root growth and root/shoot partitioning[J]. Annals of Botany, 2004, 94(1): 1. DOI: 10.1093/aob/mch111.

    [24]

    ZHANG W K, SHEN Y G, HE X J, et al. Characterization of a novel cell cycle-related gene from Arabidopsis[J]. Journal of Experimental Botany, 2015, 56(413): 807.

    [25]

    RAI V K. Role of amino acids in plant responses to stresses[J]. Biologia Plantarum, 2002, 45(4): 481. DOI: 10.1023/a:1022308229759.

    [26]

    WULLSCHLEGER S, LOEWITH R, HALL M N. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471. DOI: 10.1016/j.cell.2006.01.016.

    [27]

    KIM J, GUAN K L. Amino acid signaling in TOR activation[J]. Annual review of Biochemistry, 2011, 80(1): 1001. DOI: 10.1146/annurev-biochem-062209-094414.

    [28]

    RICHTER J D, SONENBERG N. Regulation of cap-dependent translation by eIF4E inhibitory proteins[J]. Nature, 2005, 433(7025): 477. DOI: 10.1038/nature03205.

    [29] 秦正红. 自噬生物学与疾病基础卷[M]. 2版. 北京: 科学出版社, 2015.
    [30]

    LOEWITH R, JACINTO E, WULLSCHLEGER S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control[J]. Molecular Cell, 2002, 10(3): 457. DOI: 10.1016/s1097-2765(02)00636-6.

    [31]

    LOKDARSHI1 A, PAPDI C, PETTKÓ-SZANDTNER A, et al. ErbB-3 banding protein 1 regulates translation and counteracts 3 retinoblastoma related to maintain the root meristem[J]. Plant Physiology, 2020, 182(2): 919. DOI: 10.1104/pp.19.00805.

  • 期刊类型引用(9)

    1. 王宇,金剑雪,叶照春,陈小均,何永福. 贵州道地中药材白及产业现状及其病虫害防治研究进展. 农技服务. 2024(01): 35-38 . 百度学术
    2. 马晓雅,路茜,吴巧芬,杨燕妮,夏科,赵志国,郑文俊,仇硕. 白及根腐病病原菌的鉴定及抑制效应研究. 广西植物. 2024(02): 345-353 . 百度学术
    3. 任少峰,黄宏杨,马及. 引起白及叶枯病的一种病原物种类鉴定. 植物病理学报. 2024(05): 1042-1044 . 百度学术
    4. 张波,张荣. 小麦根茎区域真菌病害病原分离鉴定与检测技术研究. 农业开发与装备. 2023(03): 115-117 . 百度学术
    5. 罗雨薇,谭亚婷,刘洋,罗建梅,闫晓慧. 4种菊科入侵植物提取物的抑菌活性研究. 重庆师范大学学报(自然科学版). 2023(06): 129-135 . 百度学术
    6. 胡娴,陈宸彤,谢杨鋆,何珊,史红安,张志林,白翠华. 钩状木霉菌的生物学特性及对腐皮镰刀菌的抑菌机理研究. 中国生物防治学报. 2022(01): 81-87 . 百度学术
    7. 赵林艳,官会林,向萍,李泽诚,柏雨龙,宋洪川,孙世中,徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析. 生物技术通报. 2022(02): 67-74 . 百度学术
    8. 刘霞,郑雅芹,孙绎柠,李卓,吴田泽,孟祥霄,刘勤. 白及无公害栽培体系研究. 世界科学技术-中医药现代化. 2022(04): 1445-1451 . 百度学术
    9. 秦小芳,霍行,周琼,刘晨雨,林纬,黎起秦,袁高庆. 白及疫病病原菌的生物学特性及侵染特性测定. 湖南农业科学. 2020(08): 47-51 . 百度学术

    其他类型引用(5)

图(5)  /  表(1)
计量
  • 文章访问数:  2179
  • PDF下载量:  33
  • 被引次数: 14
出版历程
  • 通信作者:  于峰 feng_yu@hnu.edu.cn
  • 收稿日期:  2019-12-03
  • 修回日期:  2020-03-29
  • 网络首发日期:  2020-07-24

目录

/

返回文章
返回