香料烟云香巴斯玛1号的化学成分研究
Studies of Chemical Constituents from Oriental Tobacco YNOTBS1
-
Keywords:
- Nicotiana /
- YNOTBS1 /
- chemical constituents
-
烟草(Nicotiana tabacum L.)为茄科 (Solanacea)烟草属植物,是一年生或有限多年生草本,原产于南美洲,在中国南北各省区均有栽培,可作烟草工业原料、农药杀虫剂、也可药用如麻醉、发汗、镇静和催吐剂[1]。该属植物品种繁多,可分为烤烟、香料烟、晒烟、白肋烟、黄花烟、雪茄烟、马里兰烟和野生烟等,其中烤烟种植最为广泛[2]。国内外学者对该属多种植物的黄酮类[3]、香豆素[4]、萜类[5]等化学成分进行了研究。云香巴斯玛1号(YNOTBS1)是云南省烟草科学研究所选育出来的香料烟新品种,主要分布在云南保山、临沧、德宏等产区[6]。为了研究该植物的化学成分和生物学活性,作者对云香巴斯玛1号的化学成分进行了分离和结构鉴定。
1. 材料与方法
1.1 试验样品
试验样品采于云南省德宏市烟区,由云南农业大学烟草学院王戈副教授鉴定。
1.2 提取与分离
晾干的香料烟叶片10 kg,粉碎,用甲醇溶液浸泡10 h,提取3次,减压蒸馏,得浸膏830 g。将浸膏溶于蒸馏水中,用乙酸乙酯进行萃取,回收其溶剂,得到乙酸乙酯部分381 g;用石油醚—丙酮(20∶1~1∶2,体积比)对乙酸乙酯部分进行硅胶柱色谱分离,梯度洗脱,然后经MCI柱(日本三菱公司)脱色,得到8个部分(F1~8);对F1经硅胶柱色谱[氯仿—丙酮(20∶1~9∶1) 梯度洗脱,得到5部分(F1.1~1.5),F1.3经硅胶柱色谱[氯仿—乙酸乙酯(15∶1,体积比),石油醚—丙酮(10∶1,体积比)]分离后,再经HPLC (CH3OH-H2O 9∶1,体积比)纯化,得到化合物1(5.0 mg)、2(3.8 mg);对F2经硅胶柱色谱[氯仿—乙酸乙酯(20∶1~4∶1,体积比) 梯度洗脱,得到4个部分(F2.1~2.4),F2.1经硅胶柱色谱[氯仿—乙酸乙酯(9∶1,体积比)、石油醚∶乙酸乙酯(8∶2,体积比)、石油醚∶丙酮(9∶1,体积比)]分离后,再经HPLC (CH3OHH2O 7∶3,体积比)纯化,得到化合物4(3.2 mg)、7(7.6 mg),对F4经硅胶柱色谱[石油醚—乙酸乙酯(15∶1~1∶1,体积比) ]梯度洗脱,得到4部分(F4.1~4.4),F4.2经硅胶柱色谱[石油醚—乙酸乙酯(4∶1,体积比),氯仿—乙酸乙酯(20∶1,体积比),石油醚—丙酮(10∶1,体积比)]分离后,经HPLC (CH3OH-H2O 7∶3,体积比),得到化合物3(3.8 mg)、5(2.3 mg)、6(3.7 mg)。TLC检测通过10%硫酸—乙醇溶液点样加热观察斑点;质谱用API Qstar Pulsar型质谱仪测定;核磁共振谱用Bruker AVANCE III-600核磁共振仪测定,TMS为内标;柱层析硅胶(200~300目)、薄层层析硅胶(GF254)均为青岛海洋化工厂生产。化合物1~7结构见图1。
2. 结果与分析
化合物1,淡黄色结晶。ESI-MS m/z:301 [M + Na]+,分子式为C16H22O4。1H-NMR (CDCl3, 600 MHz): δ 0.97 (12 H, d, J = 6.6 Hz, H-3', 4', 3'', 4''), 2.03 (2 H, m, J = 7.2, 6.6 Hz, H-2', 2''), 4.07 (4 H, d, J = 7.2 Hz, H-1', 1''), 7.52 (2 H, m, J = 6.0, 5.4 Hz, H-1, 2), 7.71 (2 H, m, J = 6.0, 5.4 Hz, H-3, 6);13C-NMR (CDCl3, 150 MHz): δ 19.4 (q, C-3', 4', 3'', 4''), 27.9 (d, C-2', 2''), 72.0 (t, C-1', 1''), 129.1 (d, C-3.6), 131.1 (s, C-4, 5), 132.5 (d, C-1, 2), 167.9 (s, C=O)。其波谱数据和文献报道[7]基本一致,该化合物鉴定为邻苯二甲酸二异丁酯。
化合物2,无色透明油状液体。ESI-MS m/z:301 [M + Na]+,分子式为C16H22O4。1H-NMR (CDCl3, 600 MHZ): δ 7.71 (2 H, d, J = 3.3 HZ, H-3, 6), 7.53 (2 H, d, J = 3.3 HZ, H-1, 2), 4.29 (4 H, t, J = 6.7 HZ, H-1', 1''), 1.72 (4 H, m, H-2', 2''), 1.45 (4 H, m, H-3', 3''), 0.98 (6 H, m, H-4', 4'');13C-NMR (CDCl3, 150 MHZ): δ 13.7 (q, C-4', 4''), 19.1 (t, C-3', 3''), 30.5 (t, C-2', 2''), 65.6 (t, C-1', 1''), 128.8 (d, C-3, 6), 130.9 (s, C-4, 5), 132.2 (d, C-1, 2), 167.6 (2C, C=O)。其波谱数据和文献报道[8]基本一致,该化合物鉴定为邻苯二甲酸二丁酯 。
化合物3,白色结晶状粉末。ESI-MS m/z:273 [M + Na]+,分子式为C16H26O2。1H-NMR (CDCl3, 600 MHz): δ 0.84 (3 H, s, Me-15), 0.89 (3 H, s, Me-14), 0.91 (3 H, s, Me-16), 0.99 (2 H, dd, J = 12.6, 2.4 Hz, H-1a, H-5), 1.20 (1 H, m, H-7a), 1.34 (3 H, s, Me-13), 1.38 (1 H, dd, J = 13.8, 3.6 Hz, H-6a), 1.40 (1 H, dd, J = 15.6, 4.2 Hz, H-1b), 1.43 (2 H, m, H-7b, H-2a), 1.69 (2 H, m, H-2b, H-3a), 1.88 (1 H, dd, J = 13.8, 3.6 Hz, H-6b), 1.96 (1 H, dd, J = 15.0, 6.6 Hz, H-9), 2.07 (1 H, m, H-1b), 2.22 (1 H, dd, J=16.2, 6.0 Hz, H-11a), 2.41 (1 H, m, H-11b);13C-NMR (CDCl3 , 150 MHZ): δ 15.3 (q, C-16), 18.1 (t, C-2), 20.5 (t, C-6), 20.9 (q, C-15), 21.5 (q, C-13), 28.7 (t, C-11), 29.9 (s, C-4), 33.1 (q, C-14), 36.2 (s, C-10), 38.7 (t, C-1), 39.3 (t, C-7), 42.1 (t, C-3), 56.6 (d, C-5), 59.2 (d, C-9), 86.1 (s, C-8), 177.2 (s, C-12, C=O)。其波谱数据和文献报道[9]基本一致,该化合物鉴定为(+)-sclareolide。
化合物4,白色结晶状粉末。ESI-MS m/z: 300 [M + Na]+,分子式为C18H29O2。1H-NMR (CDCl3, 600 MHz): δ 0.88 (3 H, s, Me-16), 0.91 (3 H, s, Me-17), 1.09 (3 H, s, Me-18), 1.25 (2 H, m, H-3a, H-1a), 1.47 (1 H, m, H-3b), 1.57 (1 H, m, H-2a), 1.67 (1 H, m, H-5), 1.69 (1 H, m, H-2b), 1.72 (3 H, s, Me-15), 1.89 (1 H, m, H-1b), 2.18 (3 H, s, Me-14), 2.36 (1 H, dd, J = 14.5, 2.9 Hz, H-6a), 2.48 (1 H, m, H-11a), 2.51 (1 H, m, H-6b), 2.58 (2 H, t, J = 16.1, 7.8 Hz, H-12);13C-NMR (CDCl3, 150 MHZ): δ 11.3 (q, C-15), 17.9 (q, C-18), 18.5 (t, C-2), 21.3 (q, C-17), 22.7 (t, C-11), 29.8 (q, C-14), 32.5 (q, C-16), 33.1 (s, C-4), 35.2 (t, C-6), 35.9 (t, C-1), 41.1 (s, C-10), 41.3 (t, C-3), 42.4 (t, C-12), 50.4 (d, C-5), 130.6 (s, C-8), 166.8 (s, C=O, C-9), 200.2 (s, C-7), 206.9 (s, C-13)。其波谱数据和文献报道[10]基本一致,该化合物鉴定为14,15-dinor-8-labdene-7,13-dione。
化合物5,无色油状物。ESI-MS m/z: 341[M + Na]+,分子式为C20H30O3。1H-NMR (CDCl3, 600 MHz): δ 0.85 (3 H, s, Me-19), 0.89 (6 H, s, Me-18, Me-20), 0.99 (2 H, dd, J = 12.6, 2.4 Hz, H-5), 1.18 (1 H, m, H-1a), 1.20 (1 H, m, H-3a), 1.26 (3 H, s, Me-17), 1.36 (1 H, dd, J = 13.2, 3.0 Hz, H-6a), 1.45 (3 H, m, H-1b, H-2a, H-3b), 1.59 (1 H, dd, J = 13.8, 7.2 Hz, H-9), 1.68 (2 H, m, H-2b, H-7a), 1.82 (2 H, m, H-11a, H-6b), 2.00 (1 H, m, H-7b), 2.02 (3 H, d, J = 1.2 Hz, H-16), 2.04 (1 H, m, H-11b), 5.73 (1 H, d, J = 1.2 Hz, H-14);13C-NMR (CDCl3, 150 MHZ): δ 12.3 (q, C-16), 15.0 (q, C-20), 18.2 (t, C-2), 20.5 (t, C-6), 21.0 (q, C-19), 22.4 (q, C-17), 32.3(t, C-11), 33.1 (s, C-4), 33.4 (q, C-18), 36.6 (s, C-10), 39.6 (t, C-1), 39.9 (t, C-7), 42.3 (t, C-3), 57.2 (d, C-5), 62.3 (d, C-9), 85.4 (s, C-8), 114.1 (s, C-12), 117.0 (d, C-14), 165.8 (s, C-13), 170.7 (s, C-15, C=O)。其波谱数据和文献报道[11]基本一致,该化合物鉴定为α-levantenolide。
化合物6,无色油状物。ESI-MS m/z: 341[M + Na]+,分子式为C20H30O3。1H-NMR (CDCl3, 600 MHz): δ 0.83 (3 H, s, Me-19), 0.88 (6 H, s, Me-18, Me-20), 1.09 (2 H, dd, J = 12.8, 2.6 Hz, H-5), 1.18 (1 H, m, H-1a), 1.21 (1 H, m, H-3a), 1.24 (3 H, s, Me-17)1.33 (1 H, dd, J = 13.8, 3.4 Hz, H-6a), 1.43 (3 H, m, H-1b, H-2a, H-3b), 1.66 (2 H, m, H-2b, H-7a), 1.85 (2 H, m, H-11a, H-6b), 2.01 (1 H, m, H-7b), 2.04 (3 H, d, J = 1.4 Hz, H-16), 2.11 (1 H, m, H-11b), 2.17 (1 H, dd, J = 14.2, 4.3 Hz, H-9), 5.90 (1 H, d, J = 1.4 Hz, H-14);13C-NMR (CDCl3, 150 MHZ): δ 12.7 (q, C-16), 15.7 (q, C-20), 18.3 (t, C-2), 20.9 (t, C-6), 21.3 (q, C-19), 23.6 (q, C-17), 32.7 (t, C-11), 33.1 (s, C-4), 33.4 (q, C-18), 36.6 (s, C-10), 39.7 (t, C-1), 40.0 (t, C-7), 42.3 (t, C-3), 56.8 (d, C-5), 58.0 (d, C-9), 86.2 (s, C-8), 114.0 (s, C-12), 118.9 (d, C-14), 165.2 (s, C-13), 169.8 (s, C-15, C=O)。其波谱数据和文献报道[11]基本一致,该化合物鉴定为β-levantenolide。
化合物7,无色油状物。ESI-MS m/z: 301[M + Na]+,分子式为C18H30O2。1H-NMR (CDOD3, 600 MHz): δ 0.84 (3 H, s, Me-18), 0.90 (3 H, s, Me-17), 0.97 (1 H, dd, J = 11.9, 2.1 Hz, H-5), 1.03 (3 H, s, Me-16), 1.25 (3 H, s, Me-15), 2.27 (3 H, s, Me-14), 1.87 (1 H, dt, J = 12.3, 3.3 Hz, H-6), 1.98 (1 H, d, J = 10.5 Hz, H-9), 6.13 (1 H, d, J = 15.6 Hz, H-12), 6.92 (1 H, dd, J = 15.6, 10.5 Hz, H-11);13C-NMR (CDOD3, 150 MHZ): δ16.6 (q, C-18), 19.4 (t, C-2), 21.3 (t, C-6), 22.0 (q, C-17), 24.3 (q, C-15), 27.0 (q, C-14), 33.8 (s, C-4), 34.3 (q, C-16), 39.2 (s, C-10), 42.2 (t, C-1), 43.0 (t, C-3), 44.8 (t, C-7), 56.9 (d, C-5), 67.1 (d, C-9), 73.5 (s, C-8), 136.5 (d, C-12), 147.7 (d, C-11), 200.9 (s, C-13)。其波谱数据和文献报道[12]基本一致,该化合物鉴定为8-hydroxy-14,15- dinor-11-labden-13-one。
3. 讨论
从香料烟云香巴斯玛1号下部叶的乙酸乙酯萃取分段部位中分离得到并鉴定了7个化合物,其结构类型主要是苯环衍生物和萜类,这些化合物均首次从该植物中获得,其中萜类化合物种类较多且含量高,可能为香料烟的致香成分。此外,文献报道该属植物中所含的黄酮类、苯丙素类、萜类、酚类等物质具有抗病毒[13]、抗肿瘤细胞[14]、抗烟草花叶病毒[5, 15]等多种生物活性,且萜类抗烟草花叶病毒活性较显著。在以上研究的基础上,将进一步对香料烟的化学成分和生物活性进行研究,为合理开发、利用香料烟打下基础。
-
[1] 中国科学院中国植物志编辑委员会. 中国植物志: 第六十七卷: 第一分册 [M]. 北京: 科学出版社, 1983. [2] 张兴伟, 冯全福, 杨爱国, 等. 中国烟草种质资源分发利用情况分析[J]. 植物遗传资源学报, 2016, 17(3): 507. DOI: 10.13430/j.cnki.jpgr.2016.03.016 [3] LI Y K, WANG F, YUAN T, et al. A new homoisoflavonoid from flue-cured tobacco and its anti-tobacco mosaic virus activity[J]. Asian Journal of Chemistry, 2015, 27(7): 2741. DOI: 10.14233/ajchem.2015.17951.
[4] LIU W, WU J, WANG S J, et al. A new coumarin from roots and stems of flue-cured tobacco and its anti-tobacco mosaic virus activity[J]. Asian Journal of Chemistry, 2014, 26(10): 2820. DOI: 10.14233/ajchem.2014.15807.
[5] SHANG S Z, ZHAO W, TANG J G, et al. Antiviral sesquiterpenes from leaves of Nicotiana tabacum[J]. Fitoterapia, 2016, 108: 1. DOI: 10.1016/j.fitote.2015.11.004.
[6] 殷端, 张晨东, 杜绍明, 等. 香料烟新品种云香巴斯玛1号的选育及特征特性[J]. 中国烟草科学, 2008, 29(1): 11. DOI: 10.3969/j.issn.1007-5119.2008.01.003 [7] ZHANG W, LOU H X, LI G Y, et al. A new triterpenoid from Entodon okamurae Broth[J]. Journal of Asian Natural Products Research, 2003, 5(3): 189. DOI: 10.1080/1028602031000082016.
[8] MCNULTY J, NAIR J J, CHEEKOORI S, et al. Scope and mechanistic insights into the use of tetradecyl (trihexyl) phosphonium bistriflimide: a remarkably selective ionic liquid solvent for substitution reactions[J]. Chemistry: A European Journal, 2006, 12(36): 9314. DOI: 10.1002/chem.200600653.
[9] CHOUDHARY M I, MUSHARRAF S G, SAMI A, et al. Microbial transformation of sesquiterpenes, (-)-ambrox® and (+)-sclareolide[J]. Cheminform, 2005, 36(12): 2685. DOI: 10.1002/chin.200512186.
[10] WAHLBERG I, EKLUND A M, NORDFORS K, et al. ChenInform abstract: tobacco chemistry. Part 69. Five new labdanic compounds from tobacco[J]. ChemInform, 1989, 20(16): 313.
[11] URONES J G, BASABE P, MARCOS I S, et al. Chemistry of labdanediol from Cistus ladaniferus, L. synthesis of 12-nor-ambreinolide and α and β-levantenolides[J]. Tetrahedron, 1993, 24(9): 10389.
[12] YANG X W, LI S M, FENG L, et al. Abiesanordines A–N: fourteen new norditerpenes from Abies georgei[J]. Tetrahedron, 2008, 39(39): 4354.
[13] WU X X, XU Y, LENG H Q, et al. A new 4-hydroxyisoflavanone from the root of oriental tobacco and their antivirus activities[J]. Asian Journal of Chemistry, 2013, 25(11): 6133.
[14] LENG H Q, CHEN J X, HANG Y, et al. Two new phenylpropanoids from the leaves of oriental tobacco and their cytotoxicity[J]. Chemistry of Natural Compounds, 2014, 49(6): 1028. DOI: 10.1007/s10600-014-0815-1.
[15] XU W X, HAN Y, ZHANG X, et al. A new phenolic compound from the roots of flue-cured tobacco and its anti-tobacco mosaic virus activity[J]. Asian Journal of Chemistry, 2014, 26(9): 2621.