• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊
  • 中国农林核心期刊(A类)
  • 中国高校百佳科技期刊

橡胶籽油替代鱼油对鲤鱼生长、体成分和生化指标的影响

詹瑰然, 王坤, 张新党, 张曦, 李业荣, 邓君明

詹瑰然, 王坤, 张新党, 等. 橡胶籽油替代鱼油对鲤鱼生长、体成分和生化指标的影响[J]. 云南农业大学学报(自然科学), 2018, 33(1): 63-71. DOI: 10.12101/j.issn.1004-390X(n).201702026
引用本文: 詹瑰然, 王坤, 张新党, 等. 橡胶籽油替代鱼油对鲤鱼生长、体成分和生化指标的影响[J]. 云南农业大学学报(自然科学), 2018, 33(1): 63-71. DOI: 10.12101/j.issn.1004-390X(n).201702026
Guiran ZHAN, Kun WANG, Xindang ZHANG, et al. Effects of Replacing Fish Oil with Rubber Seed Oil on the Growth, Body Composition and Biochemical Indexes in Cyprinus carpio[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(1): 63-71. DOI: 10.12101/j.issn.1004-390X(n).201702026
Citation: Guiran ZHAN, Kun WANG, Xindang ZHANG, et al. Effects of Replacing Fish Oil with Rubber Seed Oil on the Growth, Body Composition and Biochemical Indexes in Cyprinus carpio[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(1): 63-71. DOI: 10.12101/j.issn.1004-390X(n).201702026

橡胶籽油替代鱼油对鲤鱼生长、体成分和生化指标的影响

详细信息
    作者简介:

    詹瑰然(1980—),女,重庆长寿人,本科,副高级农艺师,主要从事水产养殖技术推广研究。E-mail: 525553985@qq.com

    通信作者:

    李业荣(1965—),男,云南昆明人,硕士,副教授,主要从事农业产业经济发展、经济计量分析研究。E-mail: Leeyr1965@163.com

    邓君明(1977—),男,江西宁都人,博士,教授,主要从事水产动物营养与饲料研究。E-mail: djunming@163.com

摘要:
目的 为探讨橡胶籽油替代鱼油对鲤鱼生长、体成分和生化指标的影响。
方法 用橡胶籽油替代0%、25%、50%、75%和100%的鱼油,配制5种等氮等能饲料进行10周养殖试验。
结果 (1) 0%和25%组末重、体增重和日增重系数差异不显著,但显著高于其余处理组;75%和100%组饲料效率和蛋白质效率显著低于其他处理组。(2) 0%组血清总胆固和低密度脂蛋白胆固醇水平显著高于50%、75%和100%组(P<0.05)。各处理组血清甘油三酯和高密度脂蛋白胆固醇水平均无显著性差异(P>0.05)。(3)随着替代比例的提高,肝脏谷丙转氨酶活性呈先上升后下降的趋势,以25%和50%组活性最高。(4) 100%组血浆超氧化物歧化酶和碱性磷酸酶活性明显低于0%和25%组,类似地,100%组血浆过氧化氢酶活性显著低于25%和75%组(P<0.05)。25%和50%组肝脏总抗氧化酶显著高于100%组(P<0.05)。75%组肝脏碱性磷酸酶活性显著高于0%、25%和50%组(P<0.05)。
结论 饲料中橡胶籽油替代25%鱼油对鲤鱼生长性能和饲料利用率等均无不良影响,但当替代比例超过50%时会影响鲤鱼的生长,对肝脏健康产生负面影响,因此鲤鱼饲料中橡胶籽油适宜添加量为1.6%~3.2%。

 

Effects of Replacing Fish Oil with Rubber Seed Oil on the Growth, Body Composition and Biochemical Indexes in Cyprinus carpio

Abstract:
Purpose In order to investigate the effects of replacing dietary fish oil with rubber seed oil on growth performance, body composition and biochemical indexes in Cyprinus carpio.
Method Five isoproteic and isolipidic experimental diets were formulated with 0%, 25%, 50%, 75% and 100% rubber seed oil replacing graded levels of fish oil, respectively. The experiment lasted for 10 weeks.
Results (1) There was no significant difference in weight gain, weight gain and daily weight gain of 0% and 25% groups (P>0.05), but there was significantly higher than that in 50%, 75% and 100% group (P<0.05). 75% and 100% group feed efficiency and protein efficiency were significantly lower than other treatment groups (P<0.05). (2) The total cholesterol and low density lipoprotein cholesterol of the serum in the 0% group were significantly higher than those in the 50%, 75% and 100% groups (P<0.05). There was no significant difference in serum triglyceride and high density lipoprotein cholesterol in different feed treatment groups (P>0.05). (3) With the increase of the ratio of rubber seed oil to fish oil in feed, the activity of alanine aminotransferase in liver increased first and then decreased. Among them, 25% and 50% group were significantly higher than other treatment group. (4) 100% group plasma superoxide dismutase and alkaline phosphatase activity was significantly lower than that of 0% and 25% group. Similarly, plasma catalase activity in the 100% group was significantly lower than that in the 25% and 75% groups. The liver total antioxidant capacity of 25% and 50% group was significantly higher than that of 100% group. Liver alkaline phosphatase activity in 75% group was significantly higher than that in 0%, 25% and 50% groups.
Conclusions There were no adverse effects on the growth performance and feed utilization when the replacement level of 25%. However, when the rubber seed oil replacement is more than 50%, it can hinder the growth of C. carpio, and endanger the health of the liver. The results also indicate that the suitable adding amount of rubber seed oil in carp feed was 1.6%-3.2%.

 

  • 水稻(Oryza sative L.)是世界上最重要的粮食作物之一,其种植区域广泛,栽培面积巨大。虫害和杂草每年给水稻生产造成严重损失,传统化学农药防治虽然有效,但易造成环境污染和食品安全等问题[1-2]。利用水稻自身化感特性控制杂草是最理想的途径。因此,研究水稻化感作用及相应的化感物质成为化感研究领域的一个研究热点。许多研究者开始着手研究水稻中的化感物质,水稻中的化学成分主要包括酚酸类化合物[3]、萜类化合物[4]、甾体类化合物[5]、黄酮类化合物[6]以及糖苷类化合物[7]等。研究表明:水稻中的香豆酸能够抑制稗草的生长[8],二萜类植保素能够显著抑制稻瘟病病原菌的生长[9],麦黄酮对稗草、水稻稻瘟病和纹枯病病原菌的生长具有抑制作用[6],甾体类化合物对铜绿假单胞菌具有很强的抑制作用[10]。因此,可以利用水稻自身化感特性来防治病虫害和杂草。

    水稻谷壳是最丰富的农业副产品之一,其中含有许多化感物质可以作天然除草剂和杀虫剂。前期研究发现:水稻稻壳乙醇提取物能显著抑制稗草的生长,但其中活性物质基础尚不明确。我们对水稻稻壳乙醇提取物化学成分进行研究,以期从水稻稻壳中分离得到具有抑制稗草生长的化学成分,进而阐明水稻稻壳中具有抑草活性的物质基础,并为合成新型的绿色除草剂提供先导化合物。

    水稻稻壳和稗草(Echinochloa crusgalli)由福建农林大学作物科学学院作物抗性与化学生态学研究所提供,由福建农林大学曾任森教授鉴定。

    SHZ-D型循环水式真空泵(巩义市英峪予华仪器厂),EYELA 旋转蒸发仪(日本东京理化器械株式会社),AVANCE III 500 MHz核磁共振波谱仪、AVANCE III 600 MHz核磁共振波谱仪和Waters G2-XS QTOF 超高效液相色谱—四级杆飞行时间质谱仪。

    硅胶(200~300目) (青岛海洋化工厂),Sephadex LH-20 (Pharmacia化学公司),MCI-gel CHP20P (75~100 μm) (Mitsubishi Chemical Co., Ltd.),Rp-18 (40~60 μm) (Merck)。薄层层析用预制硅胶GF-254 (青岛海浪硅胶干燥剂厂)。薄层层析展开剂为石油醚—丙酮系统以及氯仿—甲醇系统。显色剂为10% 硫酸乙醇溶液,加热显色。试剂为分析纯或工业纯(重蒸),本次试验过程中所使用的化学试剂均由福州联友玻璃仪器公司提供。

    稗草种子用10%的过氧化氢消毒5 min,然后用无菌水清洗5次,沥干。将已消毒的稗草种子铺到湿润的培养皿(垫有2层滤纸)上,最后将培养皿置于恒温恒湿培养箱(温度设置为25 ℃)中,待其露白芽。

    分别称取化合物1和2各5 mg,用甲醇配成质量浓度分别为50、25和1 μg/mL的溶液。在每个培养皿中铺上2层滤纸,往培养皿中分别加入单体化合物溶液直至滤纸湿润完全为处理组,以加相同体积甲醇的培养皿为对照组。向上述每个培养皿中挑选发芽情况一致的稗草幼苗15株,重复3次。置于光照培养箱(25 ℃,光照12 h/d,湿度95%)中培养2 d后,测量稗草的根长和苗高。按下式计算生长抑制率:

    生长抑制率=(对照生长量−处理生长量)/对照生长量×100%。

    水稻稻壳约50 kg,用95%乙醇在45 ℃下提取6 h,减压浓缩得含水提取物4.5 kg。乙醇提取物分别用氯仿、乙酸乙酯和正丁醇萃取,减压浓缩,得到氯仿萃取物0.9 kg、乙酸乙酯萃取物26 g和正丁醇萃取物1.1 kg。

    氯仿萃取部分上硅胶柱(拌样,干法上柱),用石油醚∶丙酮(9∶1~0∶1)梯度洗脱,每个梯度冲10 L,用TLC检测,合并,得到8个部分Fr. A~H。

    Fr.C (101 g)上硅胶柱,用石油醚∶丙酮(9∶1~0∶1)梯度洗脱,用TLC检测,合并,得到5个部分Fr.C1~C5。Fr.C1 (15 g)上Sephadex LH-20柱,再反复上RP-18和硅胶,得到化合物3 (26 mg)和4 (19 mg)。

    Fr.E (122 g)上Sephadex LH-20柱,用氯仿∶甲醇(1∶1~0∶1)梯度洗脱,得到6个部分Fr.E1~E6。Fr.E3 (23 g)反复柱层析得到化合物1 (16 mg)和2 (49 mg)。Fr.E5 (18 g)反复柱层析得到化合物5 (14 mg)、6 (21 mg)和7 (19 mg)。

    化合物1:黄色晶体,分子式:C29H34O16。ESI-MS m/z:661 [M+Na]+1H-NMR (CD3COCD3, 500 MHz) δH: 7.21 (2H, s, H-2′/6′), 6.87 (1H, d, J = 1.8 Hz, H-8), 6.66 (1H, s, H-3), 6.45 (1H, d, J = 1.8 Hz, H-6)。13C-NMR (CD3COCD3, 151 MHz) δC: 182.1 (C-4, C), 164.6 (C-7, C), 162.6 (C-2, C), 161.0 (C-9, C), 157.0 (C-5, C), 147.8 (C-3′/5′, C), 139.7 (C-4′, C), 120.6 (C-1′, C), 105.3 (C-2′/6′, CH), 103.8 (C-3, CH), 103.0 (C-10, C), 98.3 (C-6, CH), 94.3 (C-8, CH), 55.3 (OMe, CH3), 99.3 (GluC-1″, CH), 77.4 (GluC-2″, CH), 76.5 (GluC-3″, CH), 72.1 (GluC-4″, CH), 77.1 (GluC-5″, CH), 60.7 (GluC-6″, CH2), 100.7 (RhaC-1′′′, CH), 69.6 (RhaC-2′′′, CH), 70.4 (RhaC-3′′′, CH), 70.4 (RhaC-4′′′, CH), 68.2 (RhaC-51′′′, CH), 16.3 (RhaC-6′′′, CH3)。以上数据与文献[11]的报道基本一致。因此,确定该化合物为苜蓿素-7-O-新橙皮糖苷。

    化合物2:黄色晶体,分子式:C17H14O7。ESI-MS m/z:331 [M+H]+1H-NMR (CDCl3, 500 MHz) δH: 13.01 (1H, s, 5-OH), 9.67 (1H, s, 7-OH), 8.18 (1H, s, 4′-OH), 7.38 (2H, s, H-2′/6′), 6.73 (1H, s, H-3), 6.55 (1H, d, J = 2.0 Hz, H-8), 6.25 (1H, d, J = 2.0 Hz, H-6), 3.96 (6H, s, 2×OCH3)。13C-NMR (CDCl3, 125 MHz) δC: 183.55 (C-4, C), 165.36 (C-2, C), 165.51 (C-7, C), 163.78 (C-9, C), 159.24 (C-5, C), 149.58 (C-3′/5′, C), 141.40 (C-4′, C), 122.78 (C-1′, C), 105.78 (C-2′/6′, CH), 105.66 (C-10, C), 105.10 (C-3, CH), 100.15 (C-6, CH), 95.32 (C-8, CH), 57.38 (OMe, CH3)。以上数据与文献[12]的数据基本一致。因此,确定化合物2为5, 7, 4′-三羟基-3, 5-二甲氧基黄酮(麦黄酮)。

    化合物3:白色粉末,分子式:C29H48O2。ESI-MS m/z:451 [M+Na]+1H-NMR (CDCl3, 500 MHz) δH: 5.77 (1H, s, H-4), 4.28 (1H, t, J = 2.5 Hz, H-6), 1.36 (3H, s, 19-CH3), 0.89 (3H, d, J = 6.5 Hz, 21-CH3), 0.83 (3H, t, J = 7.5 Hz, 29-CH3), 0.81 (3H, d, J = 6.5 Hz, 27-CH3), 0.80 (3H, d, J = 6.5 Hz, 26-CH3), 0.71 (3H, s, 18-CH3)。13C-NMR (CDCl3, 125 MHz) δC: 200.9 (C-3, C), 169.0 (C-5, C), 126.4 (C-4, CH), 73.3 (C-6, CH), 56.2 (C-17, CH), 56.1 (C-14, CH), 53.8 (C-9, CH), 46.0 (C-24, CH), 42.7 (C-13, C), 39.7 (C-12, CH2), 38.7 (C-7, CH2), 38.2 (C-10, C), 37.2 (C-1, CH2), 36.3 (C-20, CH), 34.4 (C-2, CH2), 34.0 (C-22, CH2), 29.9 (C-8, CH), 29.3 (C-25, CH), 28.3 (C-16, CH2), 26.3 (C-23, CH2), 24.3 (C-15, CH2), 23.2 (C-28, CH2), 21.6 (C-11, CH2), 20.1 (C-26, CH3), 19.6 (C-19, CH3), 19.2 (C-27, CH3), 18.9 (C-21, CH3), 12.2 (C-29, CH3), 12.1 (C-18, CH3)。以上数据与文献[13]的数据基本一致。因此,确定化合物3为stigmast-4-en-6β-ol-3-one。

    化合物4:白色粉末,分子式:C29H46O2。ESI-MS m/z:449 [M+Na]+1H-NMR (CDCl3, 500 MHz) δH: 5.67 (1H, s, H-4), 5.13 (1H, dd, J = 15.6, 8.7 Hz, H-22), 5.00 (1H, dd, J = 15.6, 8.1 Hz, H-23), 3.67 (1H, t, J = 6.5 Hz, H-6), 1.20 (3H, s, 19-CH3), 1.00 (3H, d, J = 6.5 Hz, 21-CH3), 0.83 (3H, d, J = 6.5 Hz, 27-CH3), 0.78 (3H, t, J = 7.5 Hz, 29-CH3), 0.77 (3H, d, J = 6.5 Hz, 26-CH3), 0.67 (3H, s, 18-CH3)。13C-NMR (CDCl3, 125 MHz) δC: 202.5 (C-3, C), 165.3 (C-5, C), 138.2 (C-22, CH), 129.7 (C-23, CH), 126.3 (C-4, CH), 70.7 (C-6, CH), 54.9 (C-17, CH), 51.4 (C-14, CH), 50.2 (C-9, CH), 45.6 (C-24, CH), 43.2 (C-13, C), 42.0 (C-7, CH2), 40.4 (C-12, CH2), 38.7 (C-10, C), 36.5 (C-1, CH2), 36.2 (C-20, CH), 34.1 (C-2, CH2), 32.0 (C-8, CH), 29.2 (C-25, CH), 27.4 (C-16, CH2), 25.5 (C-15, CH2), 22.3 (C-28, CH2), 21.4 (C-11, CH2), 21.2 (C-26, CH3), 19.5 (C-19, CH3), 19.1 (C-27, CH3), 17.5 (C-21, CH3), 12.5 (C-29, CH3), 12.4 (C-18, CH3)。以上数据与文献[14]的数据基本一致。因此,确定化合物4为stigmast-4,22E-dien-6α-ol-3-one。

    化合物5:白色固体,分子式:C9H10O3。ESI-MS m/z:167 [M+H]+1H-NMR (600 MHz, CDCl3) δH: 7.52 (1H, d, J = 2.0 Hz, H-2), 7.52 (1H, dd, J = 8.7, 2.0 Hz, H-6), 6.93 (1H, d, J = 8.7 Hz, H-5), 6.10 (1H, s, -OH), 3.93 (3H, s, -OCH3), 2.54 (3H, s, -COCH3)。13C-NMR (151 MHz, CDCl3) δC: 197.00 (-C=O, C), 150.62 (C-3, C), 146.84 (C-4, C), 130.48 (C-1, C), 124.22 (C-6, CH), 113.98 (C-2, CH), 109.95 (C-5, CH), 56.30 (-OCH3), 26.39 (-CH3)。以上数据与文献[15]的数据基本一致。因此,化合物5被确定为3-羟基-4-甲氧基苯乙酮。

    化合物6:白色固体,分子式:C9H10O3。ESI-MS m/z:201 [M+Na]+1H-NMR (CDCl3, 600 MHz) δH: 9.62 (1H, d, J = 7.8 Hz, H-1), 7.38 (1H, d, J = 15.8 Hz, H-3), 7.10 (1H, dd, J = 8.2, 1.9 Hz, H-6′), 7.04 (1H, d, J = 1.9 Hz, H-2′), 6.94 (1H, d, J = 8.2 Hz, H-5′), 6.57 (1H, dd, J = 15.8, 7.8 Hz, H-2), 6.11 (1H, s, OH), 3.92 (3H, s, OCH3)。13C-NMR (151 MHz, CDCl3) δC: 193.83 (C-1, CH), 153.31 (C-3, CH), 126.65 (C-2, CH), 126.89 (C-1′, C), 109.73 (C-2′, CH), 147.19 (C-3′, C), 149.19 (C-4′, C), 115.17 (C-5′, CH), 124.27 (C-6′, CH), 56.23 (OMe)。以上数据与文献[16]报道的数据基本一致。因此,确定化合物6为4-羟基-3-甲氧基肉桂醛。

    化合物7:白色固体,分子式:C13H18O8。ESI-MS m/z:325 [M+Na]+13C-NMR (151 MHz, MeOH) δC: 152.95 (C-1, C), 103.90 (C-2, CH), 149.40 (C-3, C), 143.08 (C-4, C), 116.15 (C-5, CH), 110.14 (C-6, CH), 103.95 (C-1′, CH), 75.13 (C-2′, CH), 78.29 (C-3′, CH), 71.70 (C-4′, CH), 78.17 (C-5′, CH), 62.78 (C-6′, CH2), 56.54 (-OMe)。以上核磁谱数据与文献[17]的数据基本一致,故确定化合物7为tachioside。

    化合物1和2对稗草根长和苗高的影响见图1。随着化合物质量浓度的增加,化合物1和 2对稗草根长和苗高抑制作用逐渐增强。化合物1和 2在50 μg/mL时对稗草根长的抑制率分别为97%和93%,稗草根几乎不能生长,对苗高的抑制率分别为88%和84%。因此,化合物1和2有望开发成新型的除草剂以抑制稗草的生长。

    图  1  化合物1和2对稗草生长的影响
    注:不同字母表示不同处理间存在显著差异(P<0.05)。
    Figure  1.  The effects of compound 1 and 2 on the growth of E. crusgalli
    Note: Different letters mean significant difference among different treatments (P<0.05).

    本研究在生物活性指导下从水稻稻壳中分离得到7种单体化合物,化合物1~2为黄酮类化合物、化合物3~4为甾体类化合物,化合物5~7为酚酸类化合物。前期报道水稻中二萜类化合物具有很好的除草活性[18],本研究发现:黄酮类化合物1和2能很好地抑制稗草的生长。因此,在水稻化感作用中除了萜类化合物具有除草活性外,黄酮类化合物对稗草的生长同样具有很好的抑制作用。

  • 表  1   试验饲料配方和营养水平(干物质基础)

    Table  1   Component and nutrient level of experimental diets (dry weight)

    饲料成分/% feed composition 日粮diets
    R0 R25 R50 R75 R100
    鱼粉fish meal 5.00 5.00 5.00 5.00 5.00
    豆粕soybean meal 28.00 28.00 28.00 28.00 28.00
    棉籽粕cottonseed meal 8.00 8.00 8.00 8.00 8.00
    菜籽粕rapeseed meal 15.00 15.00 15.00 15.00 15.00
    玉米蛋白粉corn gluten meal 8.00 8.00 8.00 8.00 8.00
    麦麸wheat middling 25.77 25.77 25.77 25.77 25.77
    橡胶籽油rubber seed oil 0.00 1.60 3.20 4.80 6.40
    鱼油fish oil 6.40 4.80 3.20 1.60 0.00
    大豆卵磷脂soy lecithin 0.50 0.50 0.50 0.50 0.50
    磷酸二氢钙Ca(H2PO4)2 1.00 1.00 1.00 1.00 1.00
    维生素C vitamin C 0.05 0.05 0.05 0.05 0.05
    氯化胆碱choline chloride (50%) 0.25 0.25 0.25 0.25 0.25
    乙氧基喹啉ethoxyquin (30%) 0.03 0.03 0.03 0.03 0.03
    矿物质预混料mineral premix 1.00 1.00 1.00 1.00 1.00
    维生素预混料vitamin premix 1.00 1.00 1.00 1.00 1.00
    营养水平 nutrient levels
    干物质/% dry matter 89.44 89.71 89.43 90.70 90.92
    粗蛋白/% crude protein 38.57 38.93 38.44 38.84 38.94
    粗脂肪/% crude lipid 9.75 9.96 9.83 9.91 9.86
    粗灰分/% ash 6.70 6.56 6.57 6.59 6.54
    粗纤维/% crude fibre 4.86 4.92 4.88 4.85 4.95
    无氮浸出物/% NFE 40.12 39.63 40.28 39.81 39.71
    总能/(kJ·g−1) gross energy 19.89 19.98 19.92 19.97 19.95
      注:矿物质预混料(g/kg):MgSO4·7H2O,180;KI,1;FeSO4·H2O,260;ZnSO4·H2O,180;CuSO4·5H2O,25;Na2Se2O3,0.01;MnSO4·H2O,180;CoCl2·6H2O,0.75。维生素预混料(g/kg):维生素A,2;维生素D3,0.03;维生素E,30;维生素K,3;盐酸硫胺,8;核黄素,11;盐酸吡哆醇,8;维生素B12,0.02;抗坏血酸,50;叶酸,1;生物素,0.1;烟酸,30;泛酸钙,32;肌醇,25。
      Note: Mineral premix (g/kg of mixture): MgSO4·7H2O, 180; KI, 1; FeSO4·H2O, 260; ZnSO4·H2O, 180; CuSO4·5H2O, 25; Na2Se2O3, 0.01; MnSO4·H2O, 180; CoCl2·6H2O, 0.75. Vitamin premix (g/kg of mixture): retinyl acetate (2 800 000 U/g), 2 g; cholecalciferol, 0.03 g; DL-α- tocopheryl acetate, 30; menadione, 3; thiamine hydrochloride, 8; riboflavin, 11; pyridoxine hydrochloride, 8; vitamin B12, 0.02; ascorbic acid, 50; folic acid, 1; biotin 0.1; niacin, 30; calcium D-pantothenate, 32; inositol, 25.
    下载: 导出CSV

    表  2   橡胶籽油替代鱼油对鲤鱼生长性能的影响

    Table  2   Effects of fish oil replacement by rubber seed oil on growth performance of C. carpio

    项目item R0 R25 R50 R75 R100
    末重/g final weight 212.42±2.67 a 205.71±1.34 a 187.63±1.36 b 186.30±1.40 b 182.52±3.15 b
    体增重WG 0.96±0.03 a 0.90±0.01 a 0.73±0.02 b 0.72±0.02 b 0.68±0.03 b
    日增重系数/(%·d−1) DGC 2.14±0.05 a 2.03±0.02 a 1.71±0.03 b 1.68±0.03 b 1.62±0.06 b
    摄食率FI (g/kg MBW/d) 10.67±0.13 10.41±0.28 9.87±0.45 10.36±0.12 10.05±0.23
    饲料效率FER 0.69±0.01 a 0.68±0.03 a 0.61±0.03 ab 0.56±0.01 b 0.56±0.01 b
    蛋白质效率/% PER 1.80±0.02 a 1.74±0.07 a 1.58±0.09 ab 1.44±0.02 b 1.45±0.02 b
    存活率/% survival 93.1±1.4 94.4±2.8 94.4±2.8 94.4±1.4 93.1±1.4
    注:同行数据肩注不同小写字母表示差异显著(P<0.05);下同。
    Note: Values in the same row with different small letter superscripts mean significant differences (P<0.05); the same as below.
    下载: 导出CSV

    表  3   橡胶油替代鱼油对鲤鱼体组成的影响

    Table  3   Effects of fish oil replacement by rubber seed oil on body composition of C. carpio

    项目item R0 R25 R50 R75 R100
    水分moisture 75.28±0.57 76.18±0.14 75.70±0.33 75.77±0.30 75.83±0.61
    粗蛋白crude protein 15.91±0.33 15.79±0.26 15.16±0.17 15.80±0.36 14.96±0.13
    粗脂肪crude lipid 5.07±0.18 4.56±0.34 5.06±0.46 5.29±0.25 5.21±0.78
    灰分ash 3.10±0.19 3.07±0.21 3.36±0.03 3.01±0.16 3.22±0.15
    下载: 导出CSV

    表  4   橡胶籽油替代鱼油对鲤鱼消化酶活性的影响

    Table  4   Effects of fish oil replacement by rubber seed oil on digestive enzyme activities of C. carpio

    项目item R0 R25 R50 R75 R100
    肠淀粉/(U·mg−1) intestinal amylase 0.34±0.02 0.27±0.05 0.34±0.01 0.37±0.06 0.36±0.04
    肝酯酶/(U·g−1) hepatic lipase 48.89±4.33 46.30±5.02 56.41±6.65 59.76±8.44 46.79±8.07
    肝脏淀粉酶/(U·mg−1) hepatic amylase 0.26±0.02 c 0.32±0.03 bc 0.31±0.02 bc 0.39±0.04 ab 0.45±0.02 a
    下载: 导出CSV

    表  5   橡胶籽油替代鱼油对鲤鱼血脂水平的影响

    Table  5   Effects of fish oil replacement by rubber seed oil on blood lipid level activities of C. carpio

    Item R0 R25 R50 R75 R100
    总胆固醇/(mmol·L−1) total cholesterol 7.96±0.19 a 7.29±0.10 ab 6.60±0.28 b 6.11±0.44 b 6.30±0.14 b
    甘油三酸酯/(mmol·L−1) triglyceride 1.76±0.26 2.41±0.53 1.68±0.15 1.77±0.31 2.37±0.05
    高密度脂蛋白-胆固醇(HDL-C)/(mmol·L−1) 3.41±0.22 3.00±0.20 3.32±0.18 3.09±0.07 2.88±0.45
    低密度脂蛋白-胆固醇(LDL-C) /(mmol·L−1) 4.21±0.19 a 3.80±0.21 ab 2.95±0.46 b 2.66±0.40 b 2.95±0.30 b
    LDL-C/HDL-C 1.25±0.12 1.29±0.15 0.91±0.20 0.86±0.12 1.07±0.27
    下载: 导出CSV

    表  6   橡胶籽油替代鱼油对鲤鱼血浆和肝脏蛋白质代谢的影响

    Table  6   Effects of fish oil replacement by rubber seed oil on protein metabolism in plasma and liver of C. carpio

    项目item R0 R25 R50 R75 R100
    血浆plasma
    谷草转氨酶/(U·mL−1) GOT 1.21±0.09 1.25±0.10 1.30±0.03 1.44±0.06 1.35±0.08
    谷丙转氨酶/(U·mL−1) GPT 2.25±0.38 3.13±0.45 2.51±0.21 3.09±0.21 3.70±0.15
    总氨基酸/(mmol·L−1) total amino acid 56.25±5.11 50.00±1.14 52.85±1.71 56.82±2.27 49.43±8.52
    尿素氮/(mmol·L−1) urea-N 3.48±0.37 b 3.26±0.71 b 6.67±0.26 a 6.89±0.59 a 4.56±0.56 ab
    氨氮/(mmol·dL−1) ammonia-N 22.59±2.73 17.13±1.62 23.33±1.74 30.28±4.28 23.09±3.23
    P/(mmol·L−1) 3.80±0.26 3.31±0.14 3.65±0.63 3.87±0.32 4.14±0.12
    Ca/(mmol·L−1) 2.42±0.09 2.24±0.08 2.14±0.08 2.45±0.07 2.18±0.21
    肝脏liver
    GOT/(U·mg−1) 0.19±0.01 0.19±0.01 0.21±0.03 0.20±0.01 0.26±0.03
    GPT/(U·mg−1) 5.02±0.67 b 13.82±1.88 a 13.12±0.99 a 4.12±0.69 b 3.41±0.14 b
    下载: 导出CSV

    表  7   橡胶籽油替代鱼油对鲤鱼血浆和肝脏抗氧化能力的影响

    Table  7   Effects of fish oil replacement by rubber seed oil on antioxidant capacity in plasma and liver of C. carpio

    项目item R0 R25 R50 R75 R100
    血浆plasma
    超氧化物歧化酶/(U·dL−1) SOD 0.10±0.03 ab 0.12±0.01 a 0.11±0.02 ab 0.07±0.01 ab 0.03±0.00 b
    碱性磷酸酶/(U·dL−1) AKP 5.23±0.17 a 4.32±0.17 ab 4.88±0.24 a 4.64±0.19 a 3.63±0.21 b
    乳酸脱氢酶/(U·mL−1) LDH 2.60±0.46 2.65±0.30 4.01±0.39 5.18±0.60 3.12±0.79
    过氧化物酶/(U·mL−1) POD 6.97±0.91 7.59±0.14 5.97±0.80 8.13±0.56 6.91±0.73
    谷胱甘肽过氧化物酶/(U·μL−1) GSH-Px 0.70±0.05 0.74±0.10 0.75±0.10 0.76±0.07 0.58±0.01
    谷胱甘肽过氧化物酶/(U·mL−1) T-AOC 9.08±0.46 10.94±1.72 14.21±2.29 15.28±2.04 7.79±1.19
    过氧化氢酶/(U·mL−1) CAT 58.60±9.53 ab 93.50±5.90 a 65.38±8.47 ab 86.95±8.25 a 23.37±5.08 b
    丙二醛/(nmol·mL−1) MDA 6.39±1.12 6.48±0.80 6.20±0.50 6.85±1.03 8.06±0.83
    肝脏liver
    GSH-Px/(U·g−1) 0.19±0.01 0.19±0.03 0.19±0.03 0.18±0.01 0.23±0.01
    T-AOC/(U·g−1) 1.72±0.19 ab 2.77±0.58 a 2.91±0.69 a 1.81±0.11 ab 0.69±0.10 b
    AKP/(U·g−1) 3.29±0.42 b 3.49±0.31 b 3.42±0.48 b 6.89±0.89 a 4.68±0.53 ab
    POD/(U·g−1) 4.91±0.20 7.02±0.85 5.56±0.28 4.94±0.80 5.16±0.67
    下载: 导出CSV
  • [1]

    JANA P, TURID M. Alternate oils in fish feeds[J]. European Journal of Lipid Science & Technology, 2007, 109(3):256. DOI:10.1002/ ejlt.200600222.

    [2]

    REFSTIE S, STOREBAKKEN T, BAEVERFJORD G, et al. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level[J]. Aquaculture, 2001, 193: 91.DOI: 10.1016/S.0044-8486(00)004737.

    [3] 陈茜文. 橡胶籽的化学成分与综合利用初探[J]. 中南林学院学报, 1999, 19(4): 58.DOI:10.3969/j.issn. 1673-923X.1999.04.014.
    [4] 李国华, 何美莹, 白旭华, 等. 重视富含亚麻酸的橡胶种子油的开发利用[J]. 热带农业科技, 2005, 28(4): 27.DOI: 10.3969/j.issn.1672-450X.2005.04.007.
    [5]

    NARAHARI D, KOTHANDARAMAN P. Chemical composition and nutritional value of para-rubber seed and its products for chickens[J]. Animal Feed Science Technology, 1984, 10: 257.DOI:10.1016/0377-8401 (84)90021-X.

    [6] 陈家林, 韩冬, 朱晓鸣, 等. 不同脂肪源对异育银鲫的生长、体组成和肌肉脂肪酸的影响[J]. 水生生物学报, 2011, 35(6): 988.DOI: 10.3724/SP.J.1035.2011.00988.
    [7]

    TURCHINI G M, TORSTENSEN B E, WING-KEONG N. Fish oil replacement in finfish nutrition[J]. Reviews in Aquaculture, 2010, 1(1):10. DOI: 10.1111/j.1753-5131.2008.01001.x.

    [8] 程民杰. 棕榈油替代鱼油对半滑舌鳎 生长、生理生化和肌肉营养品质影响的研究[D]. 天津: 天津农学院, 2014.
    [9] 彭祥和, 任为, 李斌斌, 等. 不同水平亚麻籽油替代鱼油对罗非鱼生长及体组成的影响[J]. 饲料工业, 2014, 35(8): 30. DOI: 10.13302/j.cnki.fi.2014.08.008.
    [10] 潘瑜, 陈文燕, 林仕梅, 等. 亚麻油替代鱼油对鲤鱼生长性能、肝胰脏脂质代谢及抗氧化能力的影响[J]. 动物营养学报, 2014, 26(2): 420. DOI: 10.3969/j.issn.1006-267x.2014.02.018.
    [11]

    PENG S, CHEN L, QIN J G, et al. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli[J]. Aquaculture, 2008, 276(1/2/3/4): 154.DOI: 10.1016/j.aquaculture.2008.01.035.

    [12]

    PETTERSSON A, JOHNSSON L, BRANNAS E, et al. Effects of rapeseed oil replacement in fish feed on lipid composition and self-selection by rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture Nutrition, 2009, 15(6): 577.DOI: 10.1111/j.1365-2095.2008.00625.x.

    [13]

    BELL J G, MCEVOY J, TOCHER D R, et al. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism[J]. The Journal of Nutrition, 2001, 131(5): 1535.

    [14] 彭墨, 徐玮, 麦康森, 等. 亚麻籽油替代鱼油对大菱鲆幼鱼生长、脂肪酸组成及脂肪沉积的影响[J]. 水产学报, 2014, 38(8): 1027. DOI: 10.3969/j.issn.1006-267x.2015.03.013.
    [15]

    HILLE S. A Literature review of the blood chemistry of rainbow trout, Salmo gairderi Rich[J]. Journal of Fish Biology, 2006, 20, 20(5): 535.DOI: 10.1111/j.1095-8649.1982.tb03954.x.

    [16]

    TRENZADO C, HIDALGO M C, GARCIAGALLEGO M. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study[J]. Aquaculture, 2006, 254(1/4): 758.DOI: 10.1016/j.aquaculture.2005.11.020.

    [17] 易新文, 张文兵, 麦康森, 等. 饲料中菜籽油替代鱼油对大黄鱼生长、肌肉脂肪酸组成和体色的影响[J]. 水产学报, 2013, 37(5): 751.DOI: 10.3724/SP.J.1231.2013.38430.
    [18] 王炳谦, 徐奇友, 徐连伟, 等. 豆油代替鱼油对哲罗鱼稚鱼生长和体成分的影响[J]. 中国水产科学, 2006, 13(6): 1024.
    [19]

    SUN S M, YE J Q, CHEN J, et al. Effect of dietary fish oil replacement by rapeseed oil on the growth, fatty acid composition and serum non-specific immunity response of fingerling black carp, Mylopharyngodon piceus[J]. Aquaculture Nutrition, 2011, 17(4): 441. DOI: 10.1111/j.1365-2095.2010.00822.x.

    [20] 朱卫. 饲料脂肪水平对点篮子鱼生长性能、营养成分及消化酶活性的影响[D]. 上海: 上海海洋大学, 2013.
    [21] 叶元土. 温度、pH值对南方大口鲶、长吻鮠蛋白酶和淀粉酶活力的影响[J]. 大连水产学院学报, 1998, 13(2): 17. DOI: 10.16535/j.cnki.dlhyxb.1998.02.003.
    [22] 倪寿文, 桂远明, 刘焕亮. 草鱼、鲤、鲢、鳙和尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨[J]. 动物学报, 1993, 39(2): 160.
    [23]

    BOND C E. Circulation, respiration, and the gas bladder [M]//BOND C E. Biology of fishes. London: W.B Saunders Company Press,1979: 347.

    [24]

    JORDAL A , LIE O, TORSTENSEN B E. Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.)[J]. Aquaculture Nutrition, 2007, 13(2): 114. DOI: 10.1111/j.1365-2095.2007.00455.x.

    [25]

    CUNNANE S C, GANGULI S, MENARD C, et al. High alpha-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans [J]. The British Journal of Nutrition, 1993, 69(2): 443.

    [26]

    VIJAIMOHAN K, JAINU M, SABITHA K E, et al. Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats[J]. Life Sciences, 2006, 79(5): 448. DOI: 10.1016/j.lfs.2006.01.025.

    [27] 夏中生, 陈继新, 谢梅冬, 等. 饲粮油脂对蛋鸡生产性能、血清脂质含量和蛋黄脂肪酸组成的影响[J]. 广西农业生物科学, 2003, 22(3): 171.
    [28]

    BROWN A M, BAKER P W, GIBBONS G F. Changes in fatty acid metabolism in rat hepatocytes in response to dietary n-3 fatty acids are associated with changes in the intracellular metabolism and secretion of apolipoprotein B-48[J]. Journal of Lipid Research, 1997, 38(3): 469.

    [29]

    TORSTENSEN B E, LIE O, FRØYLAND L. Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.): effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources[J]. Lipids, 2000, 35(6): 653.

    [30] 叶元土. 水产动物的营养与饲料研究评价指标体系[J]. 饲料广角, 2004(20): 19.DOI: 10.3969/j.issn.1002-8358.2004.20.014.
    [31] 田文静. 饲料中添加硒和镁对中华螯蟹幼蟹生长、抗氧化性能的影响[D]. 上海: 华东师范大学, 2014.
    [32] 赵磊, 龙晓文, 吴旭干, 等. 育肥饲料中混合植物油替代鱼油对中华绒螯蟹成体雄蟹性腺发育、脂质代谢、抗氧化及免疫性能的影响[J]. 动物营养学报, 2016, 28(2): 455. DOI:10.3969/j.issn.1006-267 x.2016.02.000.
    [33]

    XUE Q, RENAULT T. Enzymatic activities in European flat oyster, Ostrea edulis, and pacific oyster, Crassostrea gigas, hemolymph[J]. Journal of Invertebrate Pathology, 2000, 76(3): 155. DOI: 10.1006/jipa.2000.4965.

  • 期刊类型引用(3)

    1. 宗春燕,万琴,陈馨雨,苏学军. 二氯氧锆比色法测定稻壳中的总黄酮含量. 化学与粘合. 2024(06): 627-630 . 百度学术
    2. 赵丽丽,王成港,赵琳,艾聪聪,盛慧,王玉姣,孟哲,李壮,朱春原,张修国. 覆施稻壳对大棚黄瓜长势及防控黄瓜疫病的影响. 安徽农业科学. 2023(06): 35-40 . 百度学术
    3. 张玲,任癸林,宿芃,张军华,房轶群. DOPO衍生物/八氨丙基POSS阻燃木塑复合材料的研究. 西南林业大学学报(自然科学). 2023(03): 136-144 . 百度学术

    其他类型引用(3)

表(7)
计量
  • 文章访问数:  2884
  • PDF下载量:  32
  • 被引次数: 6
出版历程

目录

/

返回文章
返回