• Core Journal of Chinese Humanities and Social Sciences of AMI
  • National Excellent Social Science Journal of Agricultural Universities
  • The most popular journal of Comprehensive Humanities and Social Sciences
REN Dandan. Research on Impact of Productive Services in Anhui Province[J]. Journal of Yunnan Agricultural University (Social Science), 2020, 14(6): 54-61. DOI: 10.3969/j.issn.1004-390X(s).202003037
Citation: REN Dandan. Research on Impact of Productive Services in Anhui Province[J]. Journal of Yunnan Agricultural University (Social Science), 2020, 14(6): 54-61. DOI: 10.3969/j.issn.1004-390X(s).202003037

Research on Impact of Productive Services in Anhui Province

DOI: 10.3969/j.issn.1004-390X(s).202003037
More Information
  • Received Date: March 13, 2020
  • Revised Date: March 27, 2020
  • Available Online: July 05, 2020
  • Published Date: December 14, 2020
  • The productive service industry has significantly promoted the optimization of industrial structure and economic growth. Based on the time series data of Anhui province from 1989 to 2018, the grey relation analysis was used to screen out the influential factors that are closely related to the productive service industry, and then the VAR model, impulse response function and variance decomposition were used to make an empirical analysis on the relationship between the main influencing factors and the development of producer services in Anhui province. The results show that the level of economic development, the level of innovation and the degree of industrial integration are the key factors affecting the development of productive services in Anhui province. The level of innovation has an obvious promoting effect on productive services in Anhui province, and its contribution to productive services is greater than the degree of industrial integration and the level of economic development. The effect of economic development level on productive services in Anhui province is relatively weak. The degree of industrial integration promotes the development of producer services in Anhui province.
  • [1]
    李平, 付一夫, 张艳芳. 生产性服务业能成为中国经济高质量增长新动能吗[J]. 中国工业经济, 2017(12): 5. DOI: 10.19581/j.cnki.ciejournal.20171214.005.
    [2]
    白雪, 宋玉祥. 中国生产性服务业发展水平的时空特征及其影响因素[J]. 人文地理, 2019, 34(3): 118. DOI: 10.13959/j.issn.1003-2398.2019.03.016.
    [3]
    张超, 郑长娟. 中国生产性服务业发展的影响因素分析: 基于贝叶斯模型平均(BMA)方法的实证研究[J]. 山东财经大学学报, 2018, 30(2): 43. DOI: 10.3969/j.issn.1008-2670.2018.02.006.
    [4]
    刘英杰. 我国生产性服务业影响因素研究[J]. 冶金经济与管理, 2018(5): 40. DOI: 10.3969/j.issn.1002-1779.2018.05.012.
    [5]
    张玉荣. 浙江省生产性服务业集聚及影响因素研究[J]. 经济论坛, 2018(2): 13. DOI: 10.3969/j.issn.1003-3580.2018.02.003.
    [6]
    田振中. 生产性服务业发展影响因素实证研究[J]. 统计与决策, 2019, 35(4): 112. DOI: 10.13546/j.cnki.tjyjc.2019.04.026.
    [7]
    于洪深, 杨纯. 吉林省生产性服务业发展的影响因素分析[J]. 吉林工商学院学报, 2017, 33(2): 8. DOI: 10.3969/j.issn.1674-3288.2017.02.002.
    [8]
    余得生, 刘俊. 欠发达地区生产性服务业发展的影响因素研究: 以江西省为例[J]. 企业经济, 2017, 36(1): 135. DOI: 10.13529/j.cnki.enterprise.economy.2017.01.020.
    [9]
    胡心宇. 湖北省生产性服务业影响因素的实证分析[J]. 物流工程与管理, 2016, 38(12): 147. DOI: 10.3969/j.issn.1674-4993.2016.12.050.
    [10]
    骆嫕, 江奕. 浙江省生产性服务业发展影响因素的实证分析[J]. 宁波大学学报(人文科学版), 2015, 28(2): 82. DOI: 10.3969/j.issn.1001-5124.2015.02.018.
    [11]
    万千欢, 千庆兰, 陈颖彪. 广州市生产性服务业影响因素研究[J]. 经济地理, 2014, 34(1): 89. DOI: 10.15957/j.cnki.jjdl.2014.01.015.
    [12]
    徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2009.
    [13]
    丁正良, 纪成君. 基于VAR模型的中国进口、出口、实际汇率与经济增长的实证研究[J]. 国际贸易问题, 2014(12): 91. DOI: 10.13510/j.cnki.jit.2014.12.009.
  • Cited by

    Periodical cited type(1)

    1. 赵鹏. 基于产业协同集聚的安徽省生产性服务业效率研究. 通化师范学院学报. 2021(03): 53-58 .

    Other cited types(2)

Catalog

    Article views (1742) PDF downloads (20) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return