Citation: | ZHANG Hongyu, LI Wenlong, CHANG Zhuang, CHENG Zhenbo. Measurement of China’ s Agricultural Carbon Emission Intensity and Analysis of Spatial Spillover Effects[J]. Journal of Yunnan Agricultural University (Social Science), 2024, 18(3): 32-38. DOI: 10.12371/j.ynau(s).202401060 |
This paper analyzed the basic status and spatial spillover effects of agricultural carbon emission intensity from the perspective of regional economics, so as to provide a certain reference for macro decision-making on agricultural carbon emission reduction and carbon sequestration. Based on the panel data of 30 provinces in China from 2012 to 2021, this paper first calculated the agricultural carbon emission intensity of each province, and then used the spatial Durbin model to explore the spatial spillover effect of China’ s agricultural carbon emission intensity on adjacent regions. As a result, China’ s agricultural carbon emission intensity decreased from 0.345 in 2012 to 0.231 in 2021, a decrease of 33.01%. The analysis of influencing factors showed that, China’ s agricultural carbon emission intensity was affected by the level of agricultural economic development, urbanization and agricultural mechanization. The spatial Doberman results showed that, a 1% increase in agricultural carbon emission intensity in this region would lead to a 0.38% reduction in agricultural carbon emission intensity in adjacent areas.China’ s agricultural carbon emission intensity was generally decreasing, and the inter-provincial differences of agricultural carbon emission intensity were obvious. There was a significant spatial correlation between China’ s agricultural carbon emission intensity, which would be positively promoted by the level of agricultural economic development, while the level of urbanization and agricultural mechanization would have a negative inhibition effect on agricultural carbon emission intensity.
[1] |
WEST O T , MARLAND G . A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems and Environment, 2002(1): 217.
|
[2] |
李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80. DOI: 10.3969/j.issn.1002-2104.2011.08.013.
|
[3] |
李国志, 李宗植. 中国农业能源消费碳排放因素分解实证分析: 基于LMDI模型[J]. 农业技术经济, 2010(10): 66. DOI: 10.13246/j.cnki.jae.2010.10.011.
|
[4] |
CHEN J , CHENG S , SONG M . Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013[J]. Renewable and Sustainable Energy Reviews, 2018: 94748-761.
|
[5] |
李俊杰. 民族地区农地利用碳排放测算及影响因素研究[J]. 中国人口·资源与环境, 2012, 22(9): 42. DOI: 10.3969/j.issn.1002-2104.2012.09.007.
|
[6] |
ZHOU M, HU B X, WEYERS S L. Decoupling of carbon emissions from agricultural land utilization from economic growth in China[J]. Agricultural Economics Zemedelska Ekonomika, 2020, 66(11): 510.
|
[7] |
刘月仙, 刘娟, 吴文良. 北京地区畜禽温室气体排放的时空变化分析[J]. 中国生态农业学报, 2013, 21(7): 891. DOI: 10.3724/SP.J.1011.2013.00891.
|
[8] |
朱志平, 董红敏, 魏莎, 等. 中国畜禽粪便管理变化对温室气体排放的影响[J]. 农业环境科学学报, 2020, 39(4): 743. DOI: 10.11654/jaes.2020-0095.
|
[9] |
邵桂兰, 孔海峥, 于谨凯, 等. 基于LMDI法的我国海洋渔业碳排放驱动因素分解研究[J]. 农业技术经济, 2015(6): 119. DOI: 10.13246/j.cnki.jae.2015.06.013.
|
[10] |
曾冰. 长江经济带渔业经济碳排放效率空间格局及影响因素研究[J]. 当代经济管理, 2019, 41(2): 44. DOI: 10.13253/j.cnki.ddjjgl.2019.02.007.
|
[11] |
尚杰, 杨果, 于法稳. 中国农业温室气体排放量测算及影响因素研究[J]. 中国生态农业学报, 2015, 23(3): 354. DOI: 10.13930/j.cnki.cjea.150078.
|
[12] |
闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21. DOI: 10.3969/j.issn.1002-2104.2012.07.004.
|
[13] |
A J B , J S D , B D L . Greenhouse gas mitigation by agricultural intensification. [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010(26): 12052-7.
|
[14] |
GONZÁLEZ F P , LANDAJO M , PRESNO M . The driving forces behind changes in CO2 emission levels in EU-27. Differences between member states[J]. Environmental Science and Policy, 2014: 3811-16.
|
[15] |
SHWESIN T A , BEHNAZ S , EHSAN R . Economic growth and environmental pollution in Myanmar: an analysis of environmental Kuznets curve[J]. Environmental science and pollution research international, 2017, 24(25): 20487.
|
[16] |
高峰. 碳排放与农业经济增长关系实证分析[J]. 中国集体经济, 2017(28): 20. DOI: 10.3969/j.issn.1008-1283.2017.28.011.
|
[17] |
葛小君, 吴丹, 李淑斌, 等. 1978−2021年广西农业净碳汇时序特征及影响因素[J]. 中国生态农业学报(中英文), 2024, 32(2): 218. DOI: 10.12357/cjea.20230523.
|
[18] |
谢帮生, 陈鎏鹏, 董丙瑞, 等. 农村产业融合的农业碳减排效应研究[J/OL]. 农林经济管理学报: 1−12[2024 − 03 − 13]. http://kns.cnki.net/kcms/detail/36.1328.F.20231204.1642.006.html.
|
[19] |
童伟伟, 李玉霖, 张董敏. 农业服务化能降低中国农业碳排放强度吗?[J/OL]. 中国农业资源与区划: 1−13[2024 − 03 − 13]. http://kns.cnki.net/kcms/detail/11.3513.S.20230803.1339.002.html.
|
[20] |
罗明忠, 魏滨辉. 农业生产性服务的碳减排作用: 效应与机制[J]. 经济经纬, 2023, 40(4): 58. DOI: 10.15931/j.cnki.1006-1096.2023.04.001.
|
[21] |
陈中伟, 汤灿. 数字经济发展对农业碳排放的影响及其时空效应[J]. 科技管理研究, 2023, 43(12): 137. DOI: 10.3969/j.issn.1000-7695.2023.12.016.
|
[22] |
田云, 张俊飚. 中国省级区域农业碳排放公平性研究[J]. 中国人口·资源与环境, 2013, 23(11): 36. DOI: 10.3969/j.issn.1002-2104.2013.11.006.
|
[23] |
蒋金荷. 中国城镇住宅碳排放强度分析和用能政策反思[J]. 数量经济技术经济研究, 2015, 32(6): 90. DOI: 10.13653/j.cnki.jqte.2015.06.006.
|
[24] |
王明星, 李晶, 郑循华. 稻田甲烷排放及产生、转化、输送机理[J]. 大气科学, 1998(4): 218. DOI: 10.3878/j.issn.1006-9895.1998.04.20.
|
[25] |
徐清华, 张广胜. 农业机械化对农业碳排放强度影响的空间溢出效应: 基于282个城市面板数据的实证[J]. 中国人口·资源与环境, 2022, 32(4): 23. DOI: 10.12062/cpre.20220411.
|
[26] |
王逸楠, 龚心仪. 长江经济带农业碳排放与经济高质量发展耦合协调度分析[J]. 改革与开放, 2021(24): 1. DOI: 10.16653/j.cnki.32-1034/f.2021.024.001.
|
[27] |
朱坤林, 张潇铠. 要素流动视角下河南省城镇化对农业碳排放的影响研究[J]. 河南工业大学学报(社会科学版), 2023, 39(6): 11. DOI: 10.16433/j.cnki.cn41-1379.2023.06.008.
|
1. |
马康清. 中国第三产业发展的影响因素及实证研究. 商展经济. 2024(04): 138-141 .
![]() | |
2. |
谷良俊. 数字经济、城镇化与农业农村高质量发展——基于安徽省的实证. 统计与决策. 2024(11): 22-27 .
![]() |