• Core Journal of Chinese Humanities and Social Sciences of AMI
  • National Excellent Social Science Journal of Agricultural Universities
  • The most popular journal of Comprehensive Humanities and Social Sciences
HU Dashuang, CHEN Xiaoling, LI Min, ZHOU Linglin. Measurement of Agricultural Production Efficiency and Its Spatial-temporal Differences in Anhui Province Based on Three-stage SBM Model[J]. Journal of Yunnan Agricultural University (Social Science), 2022, 16(6): 46-56. DOI: 10.12371/j.ynau(s).202206043
Citation: HU Dashuang, CHEN Xiaoling, LI Min, ZHOU Linglin. Measurement of Agricultural Production Efficiency and Its Spatial-temporal Differences in Anhui Province Based on Three-stage SBM Model[J]. Journal of Yunnan Agricultural University (Social Science), 2022, 16(6): 46-56. DOI: 10.12371/j.ynau(s).202206043

Measurement of Agricultural Production Efficiency and Its Spatial-temporal Differences in Anhui Province Based on Three-stage SBM Model

DOI: 10.12371/j.ynau(s).202206043
More Information
  • Received Date: June 09, 2022
  • Revised Date: September 19, 2022
  • Accepted Date: September 20, 2022
  • Available Online: September 26, 2022
  • Published Date: October 13, 2022
  • Based on the data of 16 prefectures in Anhui Province, this article selects the period of 2010—2020 as the study time period, takes into account the influence of environmental factors and random disturbances, and analyzes the agricultural production efficiency and temporal and spatial characteristics of Anhui Province from static and dynamic perspectives by using the super-efficient three-stage SBM model and Malmquist index method. The results show that both environmental factors and random disturbances significantly affect agricultural production efficiency. After excluding the above disturbances:(1)The average efficiency of agricultural production in Anhui Province is stable and growing overall from 2010 to 2020, with only three years of non-DEA validity. Among the 16 prefecture-level cities measured, 7 regions have average efficiency in DEA effective state and 9 regions are in non-DEA effective state.(2)According to the analysis results of spatial and temporal characteristics, the average efficiency and efficiency of cities from 2010 to 2020 are mainly concentrated in the southwest region of Anhui, while the average efficiency in the northeast region is relatively low.(3)Malmquist index results show that Anhui province has the highest annual average growth rate of total factors. Among prefecture-level cities, the top three regions’ total factor productivity improvement is mainly due to the promotion effect of technical efficiency, while the third to ninth regions’ total factor productivity improvement is due to the promotion effect of technological progress factors. The prefecture-level cities ranked after the 9th are mainly due to the scale efficiency which affects the increase of technical efficiency value and thus the improvement of total factor productivity. Finally, the article proposes policy recommendations to address the remaining shortcomings of agricultural production efficiency in Anhui Province.
  • [1]
    陈悦. 安徽省生猪生产波动与预测研究[D]. 合肥: 安徽农业大学, 2018.
    [2]
    戈鑫. 农村居民乡村休闲旅游行为意向及其影响因素[D]. 青岛: 青岛大学, 2019.
    [3]
    崔迎迎, 陆新文. 安徽省农业生产效率及影响因素研究: 基于三阶段DEA-Tobit模型的实证分析[J]. 青岛农业大学学报(社会科学版), 2017, 29(4): 12. DOI: 10.3969/J.ISSN.1674-1471.2017.04.003.
    [4]
    马凤才, 郭喜伟, 陈璐. 基于三阶段DEA模型的辽宁省农业生产效率分析[J]. 农业经济, 2019(4): 15. DOI: 10.3969/j.issn.1001-6139.2019.04.005.
    [5]
    华坚, 李政霖, 吴祠金. 基于三阶段DEA-Malmquist模型的我国农业全要素生产率增长研究[J]. 江西农业学报, 2015, 27(10): 134. DOI: 10.3969/j.issn.1001-8581.2015.10.030.
    [6]
    江激宇, 王丽, 方莹, 等. 气候变化对农业生产效率的影响研究: 以安徽淮河生态经济带为例[J]. 内蒙古农业大学学报(社会科学版), 2022, 24(3): 1.
    [7]
    余玉敏, 陈万旭, 朱丽君, 等. 河南省农业生产效率测度及影响因素[J]. 水土保持研究, 2018, 25(5): 262.
    [8]
    王蕾, 于成成, 王敏, 等. 我国农业生产效率的政策效应及时空差异研究: 基于三阶段DEA模型的实证分析[J]. 软科学, 2019, 33(9): 33. DOI: 10.13956/j.ss.1001-8409.2019.09.06.
    [9]
    时悦, 梁净. 城镇化与农业生产效率耦合协调关系: 基于黑龙江省、辽宁省、吉林省3省数据分析[J]. 农林经济管理学报, 2019, 18(2): 190. DOI: 10.16195/j.cnki.cn36-1328/f.2019.02.22.
    [10]
    尼鲁帕尔·迪力夏提, 郭静利. 国家级农业科研院所科研效率评价及其影响因素: 基于DEA-Malmquist-Tobit模型[J]. 科技管理研究, 2021, 41(18): 66. DOI: 10.3969/j.issn.1000-7695.2021.18.009.
    [11]
    侯琳, 冯继红. 基于超效率DEA和Malmquist指数的中国农业生产效率分析[J]. 河南农业大学学报, 2019, 53(2): 316.
    [12]
    曾福生, 高鸣. 我国粮食生产效率核算及其影响因素分析: 基于SBM-Tobit模型二步法的实证研究[J]. 农业技术经济, 2012(7): 63.
    [13]
    崔宁波, 张正岩. 基于超效率DEA模型和Malmquist指数的黑龙江省农业生产效率测度[J]. 北方园艺, 2017(22): 192. DOI: 10.11937/bfyy.20171597.
    [14]
    罗茜. 中国银行业全要素生产率测度[D]. 重庆: 重庆大学, 2011.
    [15]
    徐志强, 吕斌, 戴岳. 基于三阶段DEA模型的中国地区能源效率评价[J]. 中国矿业, 2013, 22(5): 44. DOI: 10.3969/j.issn.1004-4051.2013.05.011.
    [16]
    王欣. 我国装备制造业全要素生产率测度[D]. 成都: 西南财经大学, 2010.
    [17]
    赵爽, 江心英. 基于三阶段DEA和Malmquist指数的长江经济带工业碳排放绩效研究[J]. 财经理论研究, 2018(4): 68. DOI: 10.3969/j.issn.1004-5295.2018.04.008.
    [18]
    郭军华, 倪明, 李帮义. 基于三阶段DEA模型的农业生产效率研究[J]. 数量经济技术经济研究, 2010, 27(12): 27.
    [19]
    王刚毅, 刘杰. 东北地区农业生产效率测度及影响因素[J]. 北方园艺, 2018(15): 192. DOI: 10.11937/bfyy.20174595.
    [20]
    钟丽雯, 张建兵, 蔡芸霜, 等. 近10年广西农业生产效率与全要素生产率时空演变与驱动因素分析[J]. 中国农业资源与区划, 2021, 42(9): 272. DOI: 10.7621/cjarrp.1005-9121.20210929.
    [21]
    周端明. 技术进步、技术效率与中国农业生产率增长: 基于DEA的实证分析[J]. 数量经济技术经济研究, 2009, 26(12): 70.
    [22]
    卞圣凯, 王吉发. 基于超效率SBM模型的东北地区农业生产效率研究[J]. 农业经济, 2021(8): 44. DOI: 10.3969/j.issn.1001-6139.2021.08.016.
    [23]
    李在军, 管卫华, 臧磊. 山东省耕地生产效率及影响因素分析[J]. 世界地理研究, 2013, 22(2): 167. DOI: 10.3969/j.issn.1004-9479.2013.02.020.
    [24]
    田野, 黄进, 安敏. 乡村振兴战略下农业现代化发展效率评价: 基于超效率DEA与综合熵值法的联合分析[J]. 农业经济问题, 2021(3): 100.
    [25]
    石象斌. 安徽在工业反哺农业中的思考[J]. 江淮论坛, 2007(4): 59. DOI: 10.3969/j.issn.1001-862X.2007.04.011.
  • Cited by

    Periodical cited type(3)

    1. 陈旖旎,胡盛红,卢卫星,朱伟铭,潘禹锟,申玉琢. 基于三阶段DEA的农业能源效率计算方法改进. 中国生态农业学报(中英文). 2025(01): 153-165 .
    2. 焦义宸,侯庆丰. 河西走廊农业生产效率评价——基于DEA模型和Malmquist指数分析. 热带农业工程. 2024(03): 27-31 .
    3. 齐新,姚艺千,吴越,冯天易. 中国农业生产效率测算及区域差异研究——基于三阶段DEA和Dagum基尼系数的分析. 江西农业学报. 2023(06): 186-193 .

    Other cited types(3)

Catalog

    Article views (2197) PDF downloads (47) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return