Citation: | LI Jie, XIAO Fuliang, TANG Min, et al. Chlorophyll Fluorescence Characteristics of Tea Twig Cuttings in Hydroponic Environment[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(5): 117-124. DOI: 10.12101/j.issn.1004-390X(n).202407023 |
To study the chlorophyll fluorescence characteristics of tea twig cuttings in hydroponic environment.
Using the twig cuttings of Fudingdabai tea as materials, the cuttings were first soaked in four different mass concentrations (0, 50, 100, 200 mg/L) of naphthylacetic acid (NAA) for 12 hours, and then, the cuttings were cultured by hydroponics and soil culture, respectively. The chlorophyll fluorescence parameters and growth and development indexes of tea twig cuttings cultured in different substrates under different mass concentrations of NAA were measured by PAM-2500 portable chlorophyll fluorescence analyzer and biological statistical methods.
In the culture of tea twig cuttings, 89.4%-96.1% of the light energy was dissipated, and only 3.9%-10.6% of the light energy was used for photosystem Ⅱ photochemical reactions. Compared with soil cultured cuttings, hydroponic cuttings showed significantly increased variable fluorescence (Fv), potential photochemical activity (Fv/Fo), photochemical quenching coefficient (qP), electron transport rate (ETR), and callus rate; while initial fluorescence (Fo) and mortality rate were significantly reduced. Compared with the hydroponic control, hydroponic cuttings soaked in 100 mg/L NAA showed a significant increase in Fv/Fo, maximum electron transfer efficiency (ETRmax), photochemical reaction [Y(II)], light response curve slope, and callus rate; while Fo and mortality rates were significantly reduced. Compared with the soil culture control, the soil culture cuttings soaked in 50 mg/L NAA showed a significant decrease in maximum fluorescence (Fm), Fv, primary light energy conversion efficiency (Fv/Fm), and Fv/Fo; while the rooting rate increased significantly. The rooting rate in soil culture environment was significantly higher than that in hydroponic environment, among them, the rooting rate of cuttings in the 100 and 200 mg/L NAA soaking treatment groups reaching over 30%.
The light energy utilization efficiency of tea twig cuttings is relatively low, and strong light stress damage should be avoided. Hydroponics can obviously improve the self-protection ability of cuttings, enhance photosynthesis ability, accelerate callus formation, and different mass concentrations of NAA soaking treatment have an enhancing effect on the potential photochemical activity, light initiation rate, and callus rate of hydroponic tea twig cuttings. Among them, soaking in 100 mg/L NAA for 12 hours in the early stage of cuttings has the best effect. The results can provide a theoretical reference for the optimization of large-scale hydroponic cutting technology for tea twigs.
[1] |
LIU Y, WANG D Z, ZHANG S Z, et al. Global expansion strategy of Chinese herbal tea beverage[J]. Advance Journal of Food Science and Technology, 2015, 7(9): 739. DOI: 10.19026/ajfst.7.1731.
|
[2] |
许晓岗, 童丽丽, 赵九洲. 垂丝海棠插穗的内源激素水平及其与扦插生根的关系[J]. 江西林业科技, 2007(1): 20. DOI: 10.16259/j.cnki.36-1342/s.2007.01.005.
|
[3] |
LESMESVESGA R A, CHAPARRO J X, SARKHOSH A, et al. Effect of propagation systems and indole-3-butyric acid potassium salt (K-IBA) concentrations on the propagation of peach rootstocks by stem cuttings[J]. Plants, 2021, 10(6): 1151. DOI: 10.3390/plants10061151.
|
[4] |
刘小妹, 孙丽莉, 傅向东, 等. 茶树嫩枝扦插的高效方法[J]. 植物学报, 2019, 54(4): 531. DOI: 10.11983/CBB19025.
|
[5] |
沈妮. 茶树品系紫魁短穗扦插生根关键影响因子研究[D]. 贵阳: 贵州大学, 2023.
|
[6] |
任志红, 吴焕焕, 肖文敏, 等. 北方茶区茶树短穗扦插繁育技术研究[J]. 中国农学通报, 2021, 37(16): 43. DOI: 10.11924/j.issn.1000-6850.casb2020-0337.
|
[7] |
陈雨露. 紫魁茶树组培快繁及再生体系研究[D]. 贵阳: 贵州大学, 2023.
|
[8] |
王铭涵, 丁玎, 张晨禹, 等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020, 40(4): 478. DOI: 10.13305/j.cnki.jts.2020.04.004.
|
[9] |
SONG E K, JEON H S, SHIM B D, et al. Strong solar irradiance reduces growth and alters catechins concentration in tea plants over winter[J]. Journal of Crop Science and Biotechnology, 2019, 22(5): 475. DOI: 10.1007/s12892-019-0215-0.
|
[10] |
向芬, 李维, 刘红艳, 等. 氮素水平对不同品种茶树光合及叶绿素荧光特性的影响[J]. 西北植物学报, 2018, 38(6): 1138. DOI: 10.7606/j.issn.1000-4025.2018.06.1138.
|
[11] |
XIA W, LI C L, NIE J, et al. Stable isotope and photosynthetic response of tea grown under different temperature and light conditions[J]. Food Chemistry, 2022, 368(10): 130771. DOI: 10.1016/j.foodchem.2021.130771.
|
[12] |
颜廷武. 不同种源美国红枫苗期光合特性研究[J]. 辽宁林业科技, 2014(6): 24. DOI: 10.3969/j.issn.1001-1714.2014.06.006.
|
[13] |
YUE C N, WANG Z H, YANG P X. Review: the effect of light on the key pigment compounds of photosensitive etiolated tea plant[J]. Botanical Studies, 2021, 62(1): 21. DOI: 10.1186/s40529-021-00329-2.
|
[14] |
ALI A G, MARYAM S, MOHAMMAD P, et al. Monitoring the photosystem Ⅱ behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient[J]. Journal of Plant Nutrition, 2016, 39(8): 1174. DOI: 10.1080/01904167.2015.1047522.
|
[15] |
翟秀明, 唐敏, 胡方洁, 等. 高温干旱胁迫对茶树叶绿素荧光特性的影响[J]. 南方农业, 2019, 13(4): 46. DOI: 10.19415/j.cnki.1673-890x.2019.4.016.
|
[16] |
唐敏, 翟秀明, 李解, 等. 不同物候期茶树品种(系)叶绿素荧光特性研究[J]. 南方农业, 2020, 14(28): 9. DOI: 10.19415/j.cnki.1673-890x.2020.28.003.
|
[17] |
谢文钢, 陈玮, 谭礼强, 等. 四川3个特色茶树品种芽叶性状及光合特性分析[J]. 茶叶科学, 2021, 41(6): 813. DOI: 10.13305/j.cnki.jts.2021.06.006.
|
[18] |
张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444. DOI: 10.3969/j.issn.1674-3466.1999.04.021.
|
[19] |
孔海云, 张丽霞, 王日为. 低温与光照对茶树叶片叶绿素荧光参数的影响[J]. 茶叶, 2011, 37(2): 75. DOI: 10.3969/j.issn.0577-8921.2011.02.003.
|
[20] |
涂淑萍, 黄航, 杜曲, 等. 不同品种茶树叶片光合特性与叶绿素荧光参数的比较[J]. 江西农业大学学报, 2021, 43(5): 1098. DOI: 10.13836/j.jjau.2021118.
|
[21] |
魏静, 谭星, 闫瑞, 等. 引种鸡爪槭光合特性及叶片呈色对异质生境的响应[J]. 西南大学学报(自然科学版), 2024, 46(2): 125. DOI: 10.13718/j.cnki.xdzk.2024.02.013.
|
[22] |
张玲丽, 李文甲, 李惠霞. 水分处理对番茄侧枝扦插叶片部分生理指标及叶绿素荧光参数的影响[J]. 江苏农业科学, 2015, 43(9): 194. DOI: 10.15889/j.issn.1002-1302.2015.09.062.
|
[23] |
张艳丽. 不同光源萎凋对乌龙茶生理生化及品质形成影响研究[D]. 福州: 福建农林大学, 2010.
|
[24] |
薛芳婷, 刘新亮, 刘玉华, 等. 芽变黄叶银杏光合和叶绿素荧光特性[J]. 西部林业科学, 2023, 52(4): 129. DOI: 10.16473/j.cnki.xblykx1972.2023.04.019.
|
[25] |
周琳, 陈周一琪, 王玉花, 等. 光质对茶树愈伤组织中茶多酚及抗氧化酶活性的影响[J]. 茶叶科学, 2012, 32(3): 210. DOI: 10.13305/j.cnki.jts.2012.03.010.
|
[26] |
张莹, 盛忠雷, 邓敏, 等. 施加外源IBA对南川大茶树扦插生根和茶树生长素应答因子(CsARFs) mRNA表达的影响[J]. 云南农业大学学报(自然科学), 2020, 35(4): 667. DOI: 10.12101/j.issn.1004-390X(n).201901017.
|
[27] |
梁金波, 张强, 戴居会. 茶树“二段法”快繁育苗水培生根技术研究试验初探[J]. 茶叶, 2009, 35(1): 14. DOI: 10.3969/j.issn.0577-8921.2009.01.005.
|