• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
LIU Ye, SUN Liang, ZHAO Guolin, et al. Transcriptome Analysis of Lilium Siberian Induced by Melatonin and LoERF96 Gene Cloning[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 119-130. DOI: 10.12101/j.issn.1004-390X(n).202401006
Citation: LIU Ye, SUN Liang, ZHAO Guolin, et al. Transcriptome Analysis of Lilium Siberian Induced by Melatonin and LoERF96 Gene Cloning[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 119-130. DOI: 10.12101/j.issn.1004-390X(n).202401006

Transcriptome Analysis of Lilium Siberian Induced by Melatonin and LoERF96 Gene Cloning

More Information
  • Received Date: January 05, 2024
  • Revised Date: June 29, 2024
  • Accepted Date: August 21, 2024
  • Available Online: September 03, 2024
  • Published Date: September 08, 2024
  • Purpose 

    To study the molecular regulatory mechanism of the germination stage of Lilium Siberian, and to screen the potential ethylene response factor (ERF) that responds to melatonin to promote the germination of Lilium Siberian.

    Methods 

    Transcriptome sequencing analysis was performed on the samples of Lilium Siberian bulblets under melatonin treatment during the critical period, and the differentially expressed genes were functionally annotated, screening the potential ERF genes that respond to melatonin to promote the germination of lily bulblets. The screened key gene LoERF96 was cloned and bioinformatically analyzed, and the expression of LoERF96 gene was quantified by RT-qPCR in four different growth and development periods of small bulbs.

    Results 

    According to the transcriptome data, 780 differential expressed genes were obtained, including 392 up-regulated genes and 388 down-regulated genes. The results of GO enrichment analysis showed that: the biological processes of enriched differential genes included metabolic processes, cellular processes, biological regulation, stimulus response, signaling, reproductive process, and so on. KEGG metabolic pathway analysis showed that: the metabolic pathways of the differential genes included plant hormone signal transduction, plant MAPK signaling pathway, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis, carbon metabolism, protein processing in endoplasmic reticulum, and so on. The LoERF96 gene was obtained by homologous cloning, the full-length sequence of the gene was 435 bp, encoding 144 amino acids, with one AP2 conserved structural domain, the relative molecular weight of the protein was about 16.32 ku, and the theoretical isoelectric point was 4.94; it was a hydrophilic protein with no transmembrane structure, and the subcellular localization was predicted to be in nucleus. RT-qPCR results showed that: in the four different growth and development periods of lily, the relative expression level of LoERF96 gene showed a general trend of first increase and then decrease.

    Conclusion 

    The expression of ethylene response factor LoERF96 in Lilium Siberian is regulated by melatonin, which provides a theoretical basis and reference for exploring the biological functions of the lily AP2/ERF transcription factor during the germination phase.

  • [1]
    赵庆芳, 李巧峡, 丁兰, 等. 西伯利亚百合的组织培养和离体快繁[J]. 甘肃科学学报, 2003, 15(4): 52. DOI: 10.3969/j.issn.1004-0366.2003.04.010.
    [2]
    安丽萍, 谢忠奎, 李翊华, 等. 东方百合鳞片生小鳞茎生长过程中的激素变化[J]. 中国沙漠, 2012, 32(3): 705.
    [3]
    张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展[J]. 遗传, 2012, 34(7): 44. DOI: 10.3724/SP.J.10 05.2012.00835.
    [4]
    FENG K, HOU X L, XING G M, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Critical Reviews in Biotechnology, 2020, 40(6): 750. DOI: 10.1080/07388551.2020.1768509.
    [5]
    SUN Y F, LIANG B, WANG J, et al. SlPti4 affects regulation of fruit ripening, seed germination and stress responses by modulating ABA signaling in tomato[J]. Plant and Cell Physiology, 2018, 59(10): 1956. DOI: 10.1093/pcp/pcy111.
    [6]
    BUSOV V, CARNEROS E, YAKOVLEV I. EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials[J]. Plant Signaling & Behavior, 2016, 11(2): e1073873. DOI: 10.1080/15592324.2015.1073873.
    [7]
    杨博, 魏佳, 李坤峰, 等. PpyERF060-PpyABF3-Ppy MADS71调控乙烯信号通路介导的梨芽休眠进程[J]. 园艺学报, 2022, 49(10): 2249. DOI: 10.16420/j.issn.05 13-353x.2022-0585.
    [8]
    高玉迪, 李可, 朱友银, 等. 中国樱桃乙烯响应因子PpcERF5基因克隆与功能分析[J]. 植物生理学报, 2021, 57(1): 59. DOI: 10.13592/j.cnki.ppj.2020.0486.
    [9]
    庄维兵, 刘天宇, 束小春, 等. 褪黑素在植物生长发育过程中与植物激素的关系[J]. 安徽农业科学, 2018, 46(31): 12. DOI: 10.13989/j.cnki.0517-6611.2018.31.004.
    [10]
    DEBNATH B, ISLAM W, LI M, et al. Melatonin mediates enhancement of stress tolerance in plants[J]. International Journal of Molecular Sciences, 2019, 20(5): 1040. DOI: 10.3390/ijms20051040.
    [11]
    MOUSTAFA-FARAG M, ALMONEAFY A, MAHMOUD A, et al. Melatonin and its protective role against biotic stress impacts on plants[J]. Biomolecules, 2020, 10(1): 54. DOI: 10.3390/biom10010054.
    [12]
    ARNAO M B, HERNÁNDEZ-RUIZ J. Melatonin as a regulatory hub of plant hormone levels and action in stress situations[J]. Plant Biology, 2021, 23(Sup.1): 7. DOI: 10.1111/plb.13202.
    [13]
    巩彪, 史庆华. 园艺作物褪黑素的研究进展[J]. 中国农业科学, 2017, 50(12): 2326. DOI: 10.3864/j.issn.0578-1752.2017.12.013.
    [14]
    ARNAO M B, HERNÁNDEZ-RUIZ J. Melatonin and its relationship to plant hormones[J]. Annals of Botany, 2018, 121(2): 195. DOI: 10.1093/aob/mcx114.
    [15]
    SHI H T, REITER R J, TAN D X, et al. INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis[J]. Journal of Pineal Research, 2014, 58(1): 26. DOI: 10.1111/jpi.12188.
    [16]
    吕馨宁, 王玥, 贾润普, 等. 不同温度下褪黑素处理对‘阳光玫瑰’葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411. DOI: 10.3864/j.issn.0578-1752.2022.07.012.
    [17]
    WEN D, GONG B, SUN S S, et al. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling[J]. Frontiers in Plant Science, 2016, 7: 718. DOI: 10.3389/fpls.2016.00718.
    [18]
    WANG Q N, AN B, WEI Y X, et al. Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7: 1882. DOI: 10.3389/fpls.2016.01882.
    [19]
    ZHANG J, SHI Y, ZHANG X Z, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.)[J]. Environmental and Experimental Botany, 2017, 138: 36. DOI: 10.1016/j.envexpbot.2017.02.012.
    [20]
    朱红霞, 李赛楠, 苏文青, 等. 外源褪黑素对铬胁迫下百日草种子萌发及幼苗生理特性的影响[J]. 山东农业科学, 2022, 54(9): 64. DOI: 10.14083/j.issn.1001-4942.20 22.09.010.
    [21]
    ZHANG H J, ZHANG N, YANG R C, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.)[J]. Journal of Pineal Research, 2014, 57(3): 269. DOI: 10.1111/jpi.12167.
    [22]
    ZHANG J, XUE B Y, GAI M Z, et al. Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch.[J]. Frontiers in Plant Science, 2017, 8: 566. DOI: 10.3389/fpls.2017.00566.
    [23]
    徐红霞, 李晓颖, 葛航, 等. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648. DOI: 10.3969/j.issn.1004-1524.20230 143.
    [24]
    魏玲, 寇明睿, 李雯. 芒果AP2/ERF转录因子MiERF2基因的克隆及表达分析[J]. 热带作物学报, 2024, 45(1): 1. DOI: 10.3969/j.issn.1000-2561.2024.01.001.
    [25]
    张俊, 蔡苏云, 徐子豪, 等. 苦荞FtERF基因克隆、生物信息学及其表达分析[J]. 作物杂志, 2024(2): 23. DOI: 10.16035/j.issn.1001-7283.2024.02.004.
    [26]
    吴红漫, 林世扬, 颜彦, 等. 木薯ERF转录因子基因MeERF5克隆及表达分析[J]. 南方农业学报, 2022, 53(9): 2510. DOI: 10.3969/j.issn.2095-1191.2022.09.013.
    [27]
    WANG X P, LIU S D, TIAN H N, et al. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis[J]. Frontiers in Plant Science, 2015, 6: 1064. DOI: 10.3389/fpls.2015.01064.
    [28]
    ARNAO M B, HERNÁNDEZ-RUIZ J. Melatonin in flowering, fruit set and fruit ripening[J]. Plant Reproduction, 2020, 33(2): 77. DOI: 10.1007/s00497-020-00388-8.
    [29]
    LIU Z, DAI H R, HAO J J, et al. Current research and future directions of melatonin’s role in seed germination[J]. Stress Biology, 2023, 3(1): 53. DOI: 10.1007/s44 154-023-00139-5.
    [30]
    CHEN L, LU B, LIU L T, et al. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.)[J]. Plant Physiology and Biochemistry, 2021, 162: 506. DOI: 10.10 16/j.plaphy.2021.03.029.
    [31]
    GU C, GUO Z H, HAO P P, et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Botanical Studies, 2017, 58(1): 6. DOI: 10.1186/s40529-016-0159-1.
    [32]
    马芮, 李瑞雪, 郑煜聆, 等. 蓝莓AP2/ERF基因家族鉴定及其在休眠解除过程中的表达分析研究[J]. 浙江农业科学, 2022, 63(12): 2854. DOI: 10.16178/j.issn.0528-90 17.20220962.
    [33]
    王浩, 孙亮, 张济民, 等. 百合AP2/ERF家族转录因子基因LoERF4的克隆和生物信息学分析[J]. 云南农业大学学报(自然科学), 2022, 37(6): 1021. DOI: 10.12101/j.issn.1004-390X(n).202111078.

Catalog

    Article views (532) PDF downloads (25) Cited by()