Citation: | BAI Shengjun, XU Lingying, XIN Jia, et al. Aeration Change of Potting Soil under Different Fertilization Treatments[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(6): 1073-1078. DOI: 10.12101/j.issn.1004-390X(n).202301021 |
To examine the dynamic changes of soil aeration under different fertilization treatments.
The soil of greenhouse vegetable field in Nanjing, Jiangsu Province was taken as the research object, the differences of soil oxygen volume fraction among no-fertilizer (CK), normal urea (T1), humic acid urea (T2), organic manure (T3), and organic manure+urea (T4) in the pot experiment were compared.
The bulk density among these treatments were non-significant difference as followed: T1>T3>CK>T2=T4. Compared with CK treatment, T1, T2 and T3 treatment significantly increased soil oxygen volume fraction by 7.07%, 6.53%, and 3.20%, respectively. The variation trend of soil oxygen volume fraction in different fertilizer treatments was different during the growth period, and the soil oxygen volume fraction increased during the day, but the peak time was different.
The type of fertilization will significantly affect the soil oxygen volume fraction, and the application of humic acid urea is better in terms of soil bulk density and soil average oxygen volume fraction.
[1] |
郭益昌, 庄舜尧, 胡昱彦, 等. 埋管通气对雷竹林土壤氧气体积分数的影响[J]. 浙江农林大学学报, 2020, 37(1): 69. DOI: 10.11833/j.issn.2095-0756.2020.01.009.
|
[2] |
崔冰晶, 牛文全, 杜娅丹, 等. 施氮和加气灌溉对黄瓜根区土壤环境及产量的影响[J]. 节水灌溉, 2020(4): 27. DOI: 10.3969/j.issn.1007-4929.2020.04.006.
|
[3] |
XU L Y, YU Q B, WANG M Y, et al. Soil mineral nitrogen regulation by a novel porous material in structurally degraded soils[J]. Journal of the Science of Food and Agriculture, 2022, 102(14): 6285. DOI: 10.1002/jsfa.11977.
|
[4] |
张甘霖, 朱阿兴, 史舟, 等. 土壤地理学的进展与展望[J]. 地理科学进展, 2018, 37(1): 57. DOI: 10.18306/dlkxjz.2018.01.007.
|
[5] |
朱令, 邓世鑫, 雷璐嘉, 等. 竖管通气对覆盖栽培雷竹生长的影响[J]. 中国农学通报, 2023, 39(5): 55.
|
[6] |
雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2): 297. DOI: 10.11766/trxb201607060270.
|
[7] |
商子惠, 蔡焕杰, 陈慧, 等. 水肥气耦合对温室番茄地土壤N2O排放及番茄产量的影响[J]. 环境科学, 2020, 41(6): 2924. DOI: 10.13227/j.hjkx.201910056.
|
[8] |
吴现兵, 白美健, 李益农, 等. 水肥耦合对膜下滴灌甘蓝根系生长和土壤水氮分布的影响[J]. 农业工程学报, 2019, 35(17): 110. DOI: 10.11975/j.issn.1002-6819.2019. 17.014.
|
[9] |
叶林, 赵霞, 纳学伟, 等. 水肥耦合对日光温室厚皮甜瓜光合速率及产量的影响[J]. 北方园艺, 2016(1): 34. DOI: 10.11937/bfyy.201601009.
|
[10] |
YANG L, DU L L, LI W J, et al. Divergent responses of phoD- and pqqC-harbouring bacterial communities across soil aggregates to long fertilization practices[J]. Soil and Tillage Research, 2023, 228: 105634. DOI: 10.1016/j.still.2023.105634.
|
[11] |
李玮, 陈欢, 曹承富, 等. 不同施肥模式对砂姜黑土团聚体特征及有机碳的影响[J]. 中国农学通报, 2019, 35(32): 64.
|
[12] |
杨颖楠, 黄明斌. 长期不同施肥处理对不同土层土壤水力性质的影响[J]. 水土保持通报, 2022, 42(1): 56. DOI: 10.13961/j.cnki.stbctb.2022.01.008.
|
[13] |
WANG W P, ZHANG Y F, Li H. Quantification of soil structure via synchrotron X-ray tomography after 22 years of fertilization[J]. European Journal of Soil Science, 2021, 72(5): 2115 . DOI: 10.1111/ejss.13108.
|
[14] |
侯毛毛, 陈竞楠, 杨祁, 等. 暗管排水和有机肥施用下滨海设施土壤氮素行为特征[J]. 农业机械学报, 2019, 50(11): 259. DOI: 10.6041/j.issn.1000-1298.2019.11.029.
|
[15] |
郝胜磊, 蔡廷瑶, 冯小杰, 等. 新型肥料对全球三大粮食作物产量和土壤生物学活性影响的Meta分析[J]. 植物营养与肥料学报, 2021, 27(9): 1496. DOI: 10.11674/zwyf. 2021062.
|
[16] |
于国宜, 孔令聪, 张亮, 等. 不同新型肥料对小麦光合特性、冠层结构及产量的影响[J]. 作物杂志, 2022(4): 193. DOI: 10.16035/j.issn.1001-7283.2022.04.027.
|
[17] |
张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展[J]. 植物营养与肥料学报, 2017, 23(4): 1065. DOI: 10.11674/zwfyf.16255.
|
[18] |
杨雪, 高倩, 蔡林志, 等. 新型肥料施用对马铃薯生长和产量及品质的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48(5): 550. DOI: 10.13331/j.cnki.jhau.2022.05.007.
|
[19] |
刘艳, 唐亚福, 杨越超, 等. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响[J]. 应用生态学报, 2022, 33(4): 1021. DOI: 10.13287/j.1001-9332.202204.012.
|
[20] |
臧明, 雷宏军, 潘红卫, 等. 增氧地下滴灌改善土壤通气性促进番茄生长[J]. 农业工程学报, 2018, 34(23): 109. DOI: 10.11975/j.issn.1002-6819.2018.23.013.
|
[21] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[22] |
谷晓博, 李援农, 黄鹏, 等. 种植方式和施氮量对冬油菜产量与水氮利用效率的影响[J]. 农业工程学报, 2018, 34(10): 113. DOI: 10.11975/j.issn.1002-6819.2018.10.014.
|
[23] |
WANG M Y, XU S X, YANG J Z, et al. The effect of organic and conventional management practices on soil macropore structure in greenhouse vegetable production[J]. European Journal of Soil Science, 2021, 72(5): 2133. DOI: 10.1111/ejss.13106.
|
[24] |
LUAN H A, GAO W, HUANG S W, et al. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system[J]. Soil and Tillage Research, 2019, 191: 185. DOI: 10.1016/j.still.2019.04.009.
|
[25] |
XU L Y, WANG M Y, SHI X Z, et al. Effect of long-term organic fertilization on the soil pore characteristics of greenhouse vegetable fields converted from rice-wheat rotation fields[J]. Science of the Total Environment, 2018, 631/632: 1243. DOI: 10.1016/j.scitotenv.2018.03.070.
|
[26] |
史艺杰, 王美艳, 徐胜祥, 等. 太湖流域典型设施蔬菜地土壤结构特征研究[J]. 土壤, 2020, 52(5): 1050. DOI: 10.13758/j.cnki.tr.2020.05.025.
|
[27] |
程云生. 土壤空气研究概况[J]. 土壤学报, 1965(3): 344.
|
[28] |
张静, 刘娟, 陈浩, 等. 干湿交替条件下稻田土壤氧气和水分变化规律研究[J]. 中国生态农业学报, 2014, 22(4): 408. DOI: 10.3724/SP.J.1011.2014.31093.
|
[29] |
余跑兰, 孙永明, 吴艳, 等. 地表覆盖对茶树冻害及茶园地温时空变化的影响[J]. 河南农业科学, 2022, 51(3): 65. DOI: 10.15933/j.cnki.1004-3268.2022.03.008.
|
[30] |
BOUSKILL N J, RILEY W J, ZHU Q, et al. Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments[J]. Nature Communication, 2020, 11(1): 5798. DOI: 10.15485/1670465.
|
[31] |
闫翠侠, 杨国亮, 李典鹏, 等. 生物炭对干旱区绿洲农田土壤呼吸的影响[J]. 中国农业气象, 2018, 39(9): 575. DOI: 10.3969/j.issn.1000-6362.2018.09.003.
|