• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Mingxia XIAO, Ping ZHAO, Xueyan WANG, et al. Effects of Dietary Supplemented Probiotics Bacillus coagulans on Intestinal Health of Broiler Chickens under High Temperature[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(4): 573-579. DOI: 10.12101/j.issn.1004-390X(n).202211009
Citation: Mingxia XIAO, Ping ZHAO, Xueyan WANG, et al. Effects of Dietary Supplemented Probiotics Bacillus coagulans on Intestinal Health of Broiler Chickens under High Temperature[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(4): 573-579. DOI: 10.12101/j.issn.1004-390X(n).202211009

Effects of Dietary Supplemented Probiotics Bacillus coagulans on Intestinal Health of Broiler Chickens under High Temperature

More Information
  • Received Date: November 06, 2022
  • Revised Date: June 15, 2023
  • Accepted Date: June 17, 2023
  • Available Online: June 20, 2023
  • Published Date: July 29, 2023
  • PurposeTo study the effects of Bacillus coagulans on the growth performance and intestinal health of broilers bred under high temperature.
    MethodsA total of 320 28-day-old AA broiler chickens were divided into five groups: positive control group was the normal temperature group [NT, (22±1) ℃], negative control group was the high temperature group [HT, (34±1) ℃], and three test groups. NT and HT groups were fed with basic diet; three test groups added B. coagulans with 0.2×107, 1.0×107, 5.0×107 CFU/g to the basic diet of HT group, respectively, recording HT-BC0.2, HT-BC1.0 and HT-BC5.0 group, respectively.
    ResultsCompared with NT group broilers, the average daily gain (ADG), average daily feed intake, jejunal villus height, villus height/crypt depth, number of Lactobacillus (NL) and NL/number of Escherichia coli (NE) in jejunal chyme of HT group broilers were significantly decreased (P<0.05), while the feed intake/gain and NE in jejunal chyme were significantly increased (P<0.05). Compared with HT group broilers, the ADG, jejunal villus height/crypt depth, jejunal NL/NE of HT-BC1.0 and HT-BC5.0 group broilers were significantly increased (P<0.05), while NE in jejunal chyme of HT-BC5.0 group broilers were significantly decreased (P<0.05).
    ConclusionDietary supplementation of B. coagulans improves the growth performance and intestinal health of broilers chickens under high temperature, by maintaining intestinal morphology and microflora balance.
  • [1]
    ROSTAGNO M H. Effects of heat stress on the gut health of poultry[J]. Journal of Animal Science, 2020, 98(4): skaa090. DOI: 10.1093/jas/skaa090.
    [2]
    ABDEL-MONEIM A E, SHEHATA A M, KHIDR R E, et al. Nutritional manipulation to combat heat stress in poultry: a comprehensive review[J]. Journal of Thermal Biology, 2021, 98: 102915. DOI: 10.1016/j.jtherbio.2021.102915.
    [3]
    BRUGALETTA G, TEYSSIER J, ROCHELL S J, et al. A review of heat stress in chickens. Part Ⅰ: insights into physiology and gut health[J]. Frontiers in Physiology, 2022, 13: 934381. DOI: 10.3389/fphys.2022.934381.
    [4]
    葛长荣, 程志斌. 饲用微生态制剂对热应激肉鸡生产性能影响的研究进展[J]. 饲料工业, 2019, 40(3): 1. DOI: 10.13302/j.cnki.fi.2019.03.001.
    [5]
    SALEM H M, ALQHTANI A H, SWELUM A A, et al. Heat stress in poultry with particular reference to the role of probiotics in its amelioration: an updated review[J]. Journal of Thermal Biology, 2022, 108: 103302. DOI: 10.1016/j.jtherbio.2022.103302.
    [6]
    LI Q F, WAN G, PENG C Y, et al. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress[J]. Animal Science Journal, 2020, 91(1): e13433. DOI: 10.1111/asj.13433.
    [7]
    WANG W C, YAN F F, HU J Y, et al. Supplementation of Bacillus subtilis based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens[J]. Journal of Animal Science, 2018, 96(5): 1654. DOI: 10.1093/jas/sky092.
    [8]
    王乙茹, 柳成东, 白华毅, 等. 凝结芽孢杆菌对热应激肉鸡生长性能及血清指标的影响[J]. 动物营养学报, 2020, 32(5): 2148. DOI: 10.3969/j.issn.1006-267x.2020.05.023.
    [9]
    LIU C R, RADEBE S M, ZHANG H, et al. Effect of Bacillus coagulans on maintaining the integrity intestinal mucosal barrier in broilers[J]. Veterinary Microbiology, 2022, 266: 109357. DOI: 10.1016/j.vetmic.2022.109357.
    [10]
    白勇昌, 肖明霞, 赵平, 等. 饲用凝结芽孢杆菌对肉鸡生长性能、免疫器官指数及肠道菌群的影响[J]. 饲料工业, 2022, 43(2): 13. DOI: 10.13302/j.cnki.fi.2022.02.003.
    [11]
    柳成东, 肖明霞, 李琦华, 等. 饲用益生菌凝结芽孢杆菌抑菌性能的研究[J]. 中国畜牧杂志, 2021, 57(10): 236. DOI: 10.19556/j.0258-7033.20201116-02.
    [12]
    王乙茹, 柳成东, 白华毅, 等. 一株凝结芽孢杆菌YNAU 5517对热应激肉鸡生长性能影响的初探[J]. 饲料工业, 2019, 40(5): 16. DOI: 10.13302/j.cnki.fi.2019.05.004.
    [13]
    柳成东, 肖明霞, 赵平, 等. 饲用凝结芽孢杆菌对感染产肠毒素大肠杆菌K88断奶仔猪生长性能和肠道健康的影响[J]. 动物营养学报, 2021, 33(8): 4373. DOI: 10.3969/j.issn.1006-267x.2021.08.018.
    [14]
    TEYSSIER J, BRUGALETTA G, SIRRI F, et al. A review of heat stress in chickens. Part Ⅱ: insights into protein and energy utilization and feeding[J]. Frontiers in Physiology, 2022, 13: 943612. DOI: 10.3389/fphys.2022.943612.
    [15]
    ALUWONG T, SUMANU V O, AYO J O, et al. Daily rhythms of cloacal temperature in broiler chickens of different age groups administered with zinc gluconate and probiotic during the hot-dry season[J]. Physiological Reports, 2017, 5(12): e13314. DOI: 10.14814/phy2.13314.
    [16]
    HUMAM A M, LOH T C, FOO H L, et al. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress[J]. Animals, 2019, 9(9): 644. DOI: 10.3390/ani9090644.
    [17]
    AL-FATAFTAH A R, ABDLQADER A. Effects of dietary Bacillus subtilis on heat-stressed broilers performance, intestinal morphology and microflora composition[J]. Animal Feed Science and Technology, 2014, 198: 279. DOI: 10.1016/j.anifeedsci.2014.10.012.
    [18]
    JIANG S, YAN F F, HU J Y, et al. Bacillus subtilis based probiotic improves skeletal health and immunity in broiler chickens exposed to heat stress[J]. Animals, 2021, 11(6): 1494. DOI: 10.3390/ani11061494.
    [19]
    NAWAB A, IBTISHAM F, LI G H, et al. Heat stress in poultry production: mitigation strategies to overcome the future challenges facing the global poultry industry[J]. Journal of Thermal Biology, 2018, 78: 131. DOI: 10.1016/j.jtherbio.2018.08.010.
    [20]
    CRIADO-MESAS L, ABDELLI N, NOCE A, et al. Transversal gene expression panel to evaluate intestinal health in broiler chickens in different challenging conditions[J]. Scientific Reports, 2021, 11(1): 6315. DOI: 10.1038/s41598-021-85872-5.
    [21]
    SUGIHARTO S, TURRINI Y, ISROLI I, et al. Dietary supplementation of probiotics in poultry exposed to heat stress: a review[J]. Annals of Animal Science, 2017, 17(3): 591. DOI: 10.1515/aoas-2016-0062.
    [22]
    ABDELQADER A, ABUAJAMIEH M, HAYAJNEH F, et al. Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens[J]. Journal of Thermal Biology, 2020, 92: 102654. DOI: 10.1016/j.jtherbio.2020.102654.
    [23]
    AHMAD R, YU Y H, HSIAO F S, et al. Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics[J]. Animals, 2022, 12(17): 2297. DOI: 10.3390/ani12172297.
    [24]
    LIU G H, ZHU H B, MA T H, et al. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers[J]. Journal of Thermal Biology, 2020, 91: 102619. DOI: 10.1016/j.jtherbio.2020.102619.
    [25]
    柳成东, 赵平, 王乙茹, 等. 凝结芽孢杆菌抑菌性能的研究进展[J]. 饲料工业, 2021, 42(10): 58. DOI: 10.13302/j.cnki.fi.2021.10.010.
    [26]
    GUO S S, XI Y, XIA Y, et al. Dietary Lactobacillus fermentum and Bacillus coagulans supplementation modulates intestinal immunity and microbiota of broiler chickens challenged by Clostridium perfringens[J]. Frontiers in Veterinary Science, 2021, 8: 680742. DOI: 10.3389/fvets.2021.680742.
    [27]
    ZHANG J, GU S B, ZHANG T R, et al. Characterization and antibacterial modes of action of bacteriocins from Bacillus coagulans CGMCC 9951 against Listeria monocytogenes[J]. Food Science and Technology, 2022, 160(34): 113272.
    [28]
    刘彬, 粟胜兰, 张雅惠, 等. 饲用凝结芽孢杆菌的菌种特性及作用机制[J]. 饲料工业, 2022, 43(5): 40. DOI: 10.13302/j.cnki.fi.2022.05.007.
    [29]
    葛长荣, 柳成东, 程志斌. 基于大肠杆菌感染模型探讨益生菌对断奶仔猪生长性能影响的研究进展[J]. 饲料工业, 2021, 42(14): 1. DOI: 10.13302/j.cnki.fi.2021.14.001.
    [30]
    柯轲, 方端, 高福, 等. 凝结芽孢杆菌在动物饲料中的应用[J]. 中国微生态学杂志, 2022, 34(8): 988. DOI: 10.13381/j.cnki.cjm.202208023.

Catalog

    Article views (1427) PDF downloads (15) Cited by()