• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Shoutao CAO, Jun LI, Shuaishuai SUN, et al. Prediction Study of the Global Suitable Habitat of Brazilian Tobacco Based on MaxEnt Model[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 439-445. DOI: 10.12101/j.issn.1004-390X(n).202209043
Citation: Shoutao CAO, Jun LI, Shuaishuai SUN, et al. Prediction Study of the Global Suitable Habitat of Brazilian Tobacco Based on MaxEnt Model[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(3): 439-445. DOI: 10.12101/j.issn.1004-390X(n).202209043

Prediction Study of the Global Suitable Habitat of Brazilian Tobacco Based on MaxEnt Model

More Information
  • Received Date: September 26, 2022
  • Revised Date: June 20, 2023
  • Accepted Date: June 25, 2023
  • Available Online: June 26, 2023
  • Published Date: May 29, 2023
  • PurposeTo clarify the distribution and changes of suitable habitats of Brazilian tobacco on a global scale under current and future climatic conditions, providing a theoretical basis for the rational layout of high-quality tobacco production and sustainable tobacco development.
    MethodsBased on the geographical distribution data of Brazilian tobacco and the world bioclimatic information of current and future, the suitable habitats of Brazilian tobacco on a global scale under current and future climatic conditions were predicted by MaxEnt ecological niche model and ArcGIS platform.
    ResultsMaxEnt model had high accuracy with AUC values of 0.979 and 0.966 for training data and test data, respectively. Isothermality (bio3), annual precipitation (bio12), maximum temperature of warmest month (bio5) and precipitation of warmest season (bio18) were main bioclimatic variables affecting the potential distribution area of Brazilian tobacco. The global suitable habitats of Brazilian tobacco were mainly distributed in central Africa, South America, southern North America, Asia and some parts of Australia under current climate conditions. Compared with current climate conditions, the global suitable habitats of Brazilian tobacco decreased in the SSP1-2.6 scenario and increased in the SSP5-8.5 scenario under future climate conditions.
    ConclusionThe global suitable habitat of Brazilian tobacco tends to migrate to lower latitudes under future climatic conditions.
  • [1]
    NEDELTCHEVA-ANTONOVA D, IVANOVA D, ANTONOV L, et al. Insight into the aroma profile of Bulgarian tobacco absolute oil[J]. Industrial Crops and Products, 2016, 94: 226. DOI: 10.1016/j.indcrop.2016.08.047.
    [2]
    ZHU X L, GAO Y, CHEN Z Y, et al. Development of a chromatographic fingerprint of tobacco flavor by use of GC and GC-MS[J]. Chromatographia, 2009, 69(7/8): 735. DOI: 10.1365/s10337-009-0968-4.
    [3]
    RIQUINHO D L, HENNINGTON E A. Integrated tobacco production: health, labor, and working conditions of tobacco farmers in southern Brazil[J]. Cadernos de Saúde Pública, 2016, 32(12): e00072415. DOI: 10.1590/0102-311x00072415.
    [4]
    WITTMANN M E, BARNES M A, JERDE C L, et al. Confronting species distribution model predictions with species functional traits[J]. Ecology and Evolution, 2016, 6(4): 873. DOI: 10.1002/ece3.1898.
    [5]
    FRANCA S, CABRAL H N. Distribution models of estuarine fish species: the effect of sampling bias, species ecology and threshold selection on models’ accuracy[J]. Ecological Informatics, 2019, 51: 168. DOI: 10.1016/j.ecoinf.2019.03.005.
    [6]
    李宏群, 蒲永兰, 刘晓莉, 等. 基于GARP模型对松材线虫在重庆适生区的预测[J]. 江苏农业科学, 2017, 45(24): 82. DOI: 10.15889/j.issn.1002-1302.2017.24.020.
    [7]
    陆霞, 杜新民, 安建梅. 基于GARP的美国白蛾在中国的适生区预测[J]. 农业与技术, 2016, 36(19): 46. DOI: 10.11974/nyyjs.20161032014.
    [8]
    王奕晨, 郑鹏, 潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区[J]. 福建农林大学学报(自然科学版), 2018, 47(1): 21. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2018.01.004.
    [9]
    段义忠, 王驰, 王海涛, 等. 不同气候条件下沙冬青属植物在我国的潜在分布: 基于生态位模型预测[J]. 生态学报, 2020, 40(21): 7668. DOI: 10.5846/stxb201902210306.
    [10]
    王国峥, 耿其芳, 肖孟阳, 等. 基于4种生态位模型的金钱松潜在适生区预测[J]. 生态学报, 2020, 40(17): 6096. DOI: 10.5846/stxb201907021390.
    [11]
    黄芳, 张文俊, 张建成, 等. 基于BIOCLIM模型的石蒜绵粉蚧在中国的适生区分析[J]. 浙江农业学报, 2019, 31(8): 1331. DOI: 10.3969/j.issn.1004-1524.2019.08.14.
    [12]
    黄芳, 张文俊, 张建成, 等. 基于BIOCLIM模型的绿圆跳虫在中国的适生区分析[J]. 浙江农业学报, 2021, 33(11): 2098. DOI: 10.3969/j.issn.1004-1524.2021.11.12.
    [13]
    徐家文, 史家浩, 任强, 等. 基于BIOCLIM模型的扶桑绵粉蚧在中国的适生性分析[J]. 湖北农业科学, 2015, 54(11): 2631. DOI: 10.14088/j.cnki.issn0439-8114.2015.11.018.
    [14]
    JI W, HAN K, LU Y Y, et al. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt[J]. Crop Protection, 2020, 137: 105268. DOI: 10.1016/j.cropro.2020.105268.
    [15]
    张梓毅, 司明东, 吴萌, 等. 未来气候背景下我国野生知母潜在适生区分布预测[J]. 中药材, 2022, 45(1): 37. DOI: 10.13863/j.issn1001-4454.2022.01.007.
    [16]
    陈豪杰, 聂艳, 刘新华, 等. 基于MaxEnt模型的胡杨潜在适生区预测研究[J]. 中国农业信息, 2021, 33(1): 46. DOI: 10.12105/j.issn.1672-0423.20210105.
    [17]
    柳晓燕, 李秀山, 赵彩云, 等. 气候变化背景下三尾凤蝶潜在适生区模拟及保护空缺分析[J]. 环境昆虫学报, 2021, 43(5): 1168. DOI: 10.3969/j.issn.1674-0858.2021.05.11.
    [18]
    PENG L P, CHENG F Y, HU X G, et al. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China[J]. Scientific Reports, 2019, 9(1): 3213. DOI: 10.1038/s41598-019-39449-y.
    [19]
    ZHANG K L, ZHANG Y, TAO J. Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a MaxEnt model[J]. Forests, 2019, 10(2): 190. DOI: 10.3390/f10020190.
    [20]
    梁阳阳, 陈康, 崔凯, 等. 气候变化情景下须鳗鰕虎鱼在中国的潜在地理分布[J]. 大连海洋大学学报, 2022, 37(5): 739. DOI: 10.16535/j.cnki.dlhyxb.2021-230.
    [21]
    杨继周, 谢新乔, 朱安琪, 等. 玉溪烤烟气候适宜性分析的方法研究[J]. 云南农业大学学报(自然科学), 2021, 36(5): 832. DOI: 10.12101/j.issn.1004-390X(n).202010015.
    [22]
    周舰, 孙小成, 卢朝军, 等. 气候因子小网格化技术在湖南烟草种植区划中的运用[J]. 农业工程, 2020, 10(12): 41. DOI: 10.3969/j.issn.2095-1795.2020.12.012.
    [23]
    黄旭. 基于GIS的通海县烟草种植适应性分析[J]. 地理空间信息, 2018, 16(8): 109. DOI: 10.3969/j.issn.1672-4623.2018.08.034.
    [24]
    BOETTCHER R, ZAPPE A L, DE OLIVEIRA P F, et al. Carbon footprint of agricultural production and processing of tobacco (Nicotiana tabacum) in southern Brazil[J]. Environmental Technology & Innovation, 2020, 18: 100625. DOI: 10.1016/j.eti.2020.100625.
    [25]
    DE ARAÚJO FILHO J V, MACHADO A C Z, DALLAGNOL L J, et al. Root-knot nematodes (Meloidogyne spp.) parasitizing resistant tobacco cultivars in southern Brazil[J]. Plant Disease, 2016, 100(6): 1222. DOI: 10.1094/PDIS-03-15-0341-RE.
    [26]
    SOARES T D M, COELHO F S, DE OLIVEIRA V B, et al. Soil nitrogen dynamics under tobacco with different fertilizer management in southern Brazil[J]. Geoderma Regional, 2020, 21: e00282. DOI: 10.1016/j.geodrs.2020.e00282.
    [27]
    王艳君, 高泰, 石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析[J]. 北京林业大学学报, 2021, 43(9): 59. DOI: 10.12171/j.1000-1522.20200416.
    [28]
    郭飞龙, 徐刚标, 卢孟柱, 等. 基于MaxEnt模型分析胡杨潜在适宜分布区[J]. 林业科学, 2020, 56(5): 184. DOI: 10.11707/j.1001-7488.20200521.
    [29]
    刘想, 龚熹, 陈思斯, 等. 基于MaxEnt和ArcGIS模拟檫木分布格局及其栖息地的变化[J]. 植物科学学报, 2018, 36(3): 320. DOI: 10.11913/PSJ.2095-0837.2018.30320.
    [30]
    张琴, 张东方, 吴明丽, 等. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7): 770. DOI: 10.17521/cjpe.2016.0380.
    [31]
    潘浪波, 段伟, 黄有军. 基于MaxEnt模型预测薄壳山核桃在中国的种植区[J]. 浙江农林大学学报, 2022, 39(1): 76. DOI: 10.11833/j.issn.2095-0756.20210106.
    [32]
    靳小秋, 刘玉平, 刘谦, 等. 气候条件对烤烟生长发育的影响[J]. 现代农业科技, 2009(4): 135. DOI: 10.3969/j.issn.1007-5739.2009.04.097.
    [33]
    杨晓东, 罗艾滢, 黄玉清, 等. 漓江上游毛竹生理生态特征对不同土壤水分的响应[J]. 广西植物, 2017, 37(2): 211. DOI: 10.11931/guihaia.gxzw201601004.
    [34]
    谢艳萍, 杨刚刚, 张兴旺. 基于MaxEnt模型对重要药用植物猫爪草潜在适生区的预测[J]. 安徽农业科学, 2022, 50(1): 183. DOI: 10.3969/j.issn.0517-6611.2022.01.049.
    [35]
    杨林, 张建华, 李振凤. 云南省烟草栽培技术简介[J]. 南方农业, 2022, 16(10): 47. DOI: 10.19415/j.cnki.1673-890x.2022.10.016.
    [36]
    姜宏浩, 戚伟波, 胡怡林, 等. 高标准农田建设项目碳中和示例分析: 以威海市文登区侯家镇万亩高标准农田建设项目为例[J]. 中国农业综合开发, 2023(6): 28.
  • Cited by

    Periodical cited type(5)

    1. 王浩,牛全福,刘博,雷姣姣,王刚,张瑞珍. 基于MaxEnt结合粒子群优化的陇南市山洪灾害空间分布预测研究. 武汉大学学报(信息科学版). 2024(08): 1444-1455 .
    2. 杨凡,杨胜海,郑华斌,王慰亲,唐启源. 基于MaxEnt模型预测贵州香禾糯的潜在适生区分布. 中国农业气象. 2024(08): 872-881 .
    3. 李瑞,杨建欣,马长乐,郭帅龙,杨黎星,王李娟. 基于MaxEnt模型的昆明市国家重点保护鸟类栖息地适宜性评价. 西南林业大学学报(自然科学). 2024(05): 165-175 .
    4. 杨自东,陈魏锋. 烟草常见病虫害防控及农药残留控制措施研究. 乡村科技. 2024(10): 97-100 .
    5. 杨佳鑫,刘立强,周伟权,张迎春,刘嫒,秦伟. 基于Maxent的吐哈盆地枣适生区预测. 中国农学通报. 2024(28): 119-125 .

    Other cited types(1)

Catalog

    Article views (1497) PDF downloads (19) Cited by(6)