Citation: | Qian BAI, Yuanhong CHEN, Xi CHEN, et al. Effects of Salmonella Pullorum Infection on miRNA Expression Profiles in Spleen of Chicks[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(2): 220-227. DOI: 10.12101/j.issn.1004-390X(n).202205004 |
[1] |
BARROW P A, FREITAS N O C. Pullorum disease and fowl typhoid-new thoughts on old diseases: a review[J]. Avian Pathology, 2011, 40(1): 1. DOI: 10.1080/03079457.2010.542575.
|
[2] |
SHIVAPRASAD H L. Fowl typhoid and pullorum disease[J]. Revue Scientifique et Technique, 2000, 19(2): 405. DOI: 10.20506/rst.19.2.1222.
|
[3] |
TADESSE S, ASHENAFI H, ASCHALEW Z. Seroprevalence study of newcastle disease in local chickens in central Ethiopia[J]. International Journal of Applied Research in Veterinary Medicine, 2005, 3(1): 25.
|
[4] |
TEFERI M, NEJASH A. Epidemiology and economic importance of Pullorum disease in poultry: a review[J]. Global Veterinaria, 2016, 17(3): 228. DOI: 10.5829/idosi.gv.2016.17.03.103123.
|
[5] |
BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281. DOI: 10.1016/s0092-8674(04)00045-5.
|
[6] |
HE L, HANNON G J. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522. DOI: 10.1038/nrg1379.
|
[7] |
SCHNITGER A K, MACHOVA A, MUELLER R U, et al. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response[J]. PLoS One, 2011, 6(11): e27435. DOI: 10.1371/journal.pone.0027435.
|
[8] |
WU G X, QI Y K, LIU X Y, et al. Cecal microRNAome response to Salmonella enterica serovar enteritidis infection in white leghorn layer[J]. BMC Genomics, 2017, 18(1): 77. DOI: 10.1186/s12864-016-3413-8.
|
[9] |
SUN W W, LIU R R, LI P, et al. Chicken gga-miR-1306-5p targets Tollip and plays an important role in host response against Salmonella enteritidis infection[J]. Journal of Animal Science and Biotechnology, 2019, 10: 59. DOI: 10.1186/s40104-019-0365-2.
|
[10] |
SMITH K G, HUNT J L. On the use of spleen mass as a measure of avian immune system strength[J]. Oecologia, 2004, 138(1): 28. DOI: 10.1007/s00442-003-1409-y.
|
[11] |
LI X, SHAHID M Q, WU J W, et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice[J]. International Journal of Molecular Sciences, 2016, 17(4): 499. DOI: 10.3390/ijms17040499.
|
[12] |
AKIRA S. Toll receptor families: structure and function[J]. Seminars in Immunology, 2004, 16: 1. DOI: 10.1016/j.smim.2003.10.001.
|
[13] |
CHEN Y, LIU W, XU H X, et al. gga-miR-19b-3p inhibits newcastle disease virus replication by suppressing inflammatory response via targeting RNF11 and ZMYND11[J]. Frontiers in Microbiology, 2019, 10: 2006. DOI: 10.3389/fmicb.2019.02006.
|
[14] |
ZHAO Y B, ZOU M Y, SUN Y F, et al. gga-miR-21 modulates Mycoplasma gallisepticum (HS strain)-induced inflammation via targeting MAP3K1 and activating MAPKs and NF-κB pathways[J]. Veterinary Microbiology, 2019, 237: 108407. DOI: 10.1016/j.vetmic.2019.108407.
|
[15] |
YUAN B, ZOU M Y, ZHAO Y B, et al. Up-regulation of miR-130b-3p activates the PTEN/PI3K/AKT/NF-κB pathway to defense against Mycoplasma gallisepticum (HS strain) infection of chicken[J]. International Journal of Molecular Sciences, 2018, 19(8): 2172. DOI: 10.3390/ijms19082172.
|
[16] |
GUO Q, ZHU X X, WEI R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. Journal of Cellular Physiology, 2021, 236(3): 2008. DOI: 10.1002/jcp.29987.
|
[17] |
ZHAO Y B, ZHANG K, ZOU M Y, et al. gga-miR-451 negatively regulates Mycoplasma gallisepticum (HS strain)-induced inflammatory cytokine production via targeting YWHAZ[J]. International Journal of Molecular Sciences, 2018, 19(4): 1191. DOI: 10.3390/ijms19041191.
|
[18] |
LIN L, HU K B. MiR-147: functions and implications in inflammation and diseases[J]. Microrna, 2021, 10(2): 91. DOI: 10.2174/2211536610666210707113605.
|
[19] |
ZUO X S, WANG L, BAO Y Q, et al. The ESX-1 virulence factors downregulate miR-147-3p in Mycobacterium marinum-infected macrophages[J]. Infection and Immunity, 2020, 88(6): e00088. DOI: 10.1128/IAI.00088-20.
|
[20] |
VLACIL A K, VOLLMEISTER E, BERTRAMS W, et al. Identification of microRNAs involved in NOD-dependent induction of pro-inflammatory genes in pulmonary endothelial cells[J]. PLoS One, 2020, 15(4): e0228764. DOI: 10.1371/journal.pone.0228764.
|
[21] |
ESWARAPPA S M, NEGI V D, CHAKRABORTY S, et al. Division of the Salmonella-containing vacuole and depletion of acidic lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid lysosomes[J]. Infection and Immunity, 2010, 78(1): 68. DOI: 10.1128/IAI.00668-09.
|
[22] |
HASHIM S, MUKHERJEE K, RAJE M, et al. Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes[J]. The Journal of Biological Chemistry, 2000, 275(21): 16281. DOI: 10.1074/jbc.275.21.16281.
|
[23] |
GARVIS S G, BEUZÓN C R, HOLDEN D W. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages[J]. Cellular Microbiology, 2001, 3(11): 731. DOI: 10.1046/j.1462-5822.2001.00153.x.
|
[24] |
LAHIRI A, ESWARAPPA S M, DAS P, et al. Altering the balance between pathogen containing vacuoles and lysosomes: a lesson from Salmonella[J]. Virulence, 2010, 1(4): 325. DOI: 10.4161/viru.1.4.12361.
|
[25] |
LI Q C, WANG X, XIA J, et al. Salmonella-containing vacuole development in avian cells and characteristic of cigR in Salmonella enterica serovar Pullorum replication within macrophages[J]. Veterinary Microbiology, 2018, 223: 65. DOI: 10.1016/j.vetmic.2018.07.013.
|