• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Shengnong FAN, Shuoheng WANG, Liangjun YU, et al. Effects of Biochar on Mango Root Growth, Soil Nutrients and Microbial Communities[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(4): 692-702. DOI: 10.12101/j.issn.1004-390X(n).202202032
Citation: Shengnong FAN, Shuoheng WANG, Liangjun YU, et al. Effects of Biochar on Mango Root Growth, Soil Nutrients and Microbial Communities[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(4): 692-702. DOI: 10.12101/j.issn.1004-390X(n).202202032

Effects of Biochar on Mango Root Growth, Soil Nutrients and Microbial Communities

More Information
  • Received Date: February 20, 2022
  • Revised Date: March 16, 2022
  • Accepted Date: April 28, 2022
  • Available Online: May 04, 2022
  • Published Date: July 29, 2022
  • PurposeTo study the effects of biochar on the soil nutrient content, root growth and soil microbial community structure of the mango root layer, providing a theoretical reference for the scientific application of biochar in orchards.
    MethodsTaking the “Tainung No.1” mango as the research object, three treatments were set up: conventional fertilization (CK), conventional fertilization with 3% biochar (BC), integrated water and fertilizer application with 3% biochar (FBC), to analyze soil nutrients and the changes in root configuration, and Illumina Miseq sequencing technology was used to compare the differences in soil bacterial and fungal communities.
    ResultsCompared with CK, soil pH and organic matter content of BC and FBC treatments increased; the contents of soil alkaline hydrolyzable nitrogen and available phosphorus of BC treatments increased significantly in fruiting period, and the contents of soil available potassium of BC and FBC treatments increased significantly in flowering period. The root weight density and root length density of BC treatment in fruiting period increased significantly, and the difference in average root diameter was not significant. The root box dimension was BC>FBC>CK. BC treatment increased the number, abundance and diversity of soil bacterial species, but it reduced the diversity of soil fungi; FBC treatment reduced the abundance and diversity of bacteria. BC and FBC treatments increased the abundance of Proteobacteria, Firmicutes, Gemmatimonadetes and Basidiomycota, the abundance of Chloroflexi and Ascomycota was reduced; Gemmatimonas, Sphingomonas and Mizugakiibacter were significantly enriched in BC treatment, Bacillus, Acidibacter, Alternaria and Penicillium were significantly enriched in FBC treatment. The result of redundancy analysis showed that the contents of organic matter, alkaline hydrolyzable nitrogen and available phosphorus were the driving factors of soil bacterial and fungal community structure changes, pH was the driving factor of fungal community structure changes, and root growth and development were regulated by soil environmental factors.
    ConclusionAdding biochar is beneficial to improving soil nutrient availability in mango orchards, improving soil microbial environment and promoting root growth.
  • [1]
    海南省统计局. 海南统计年鉴[M]. 北京: 中国统计出版社, 2021.
    [2]
    海南省农业厅土肥站. 海南土种志[M]. 海口: 海南出版社, 1994.
    [3]
    姚智, 白亭玉, 金成伟, 等. 海南省芒果主产区土壤养分现状与果实矿质养分相关性评价与分析[J]. 土壤通报, 2016, 47(6): 1409. DOI: 10.19336/j.cnki.trtb.2016.06.20.
    [4]
    何翠翠, 冯焕德, 魏志远, 等. 海南岛芒果园施肥现状调查及土壤养分状况分析[J]. 热带作物学报, 2018, 39(12): 2336. DOI: 10.3969/j.issn.1000-2561.2018.12.002.
    [5]
    张瀚曰, 胡斌, 包维楷, 等. 攀枝花地区芒果园土壤碳氮磷分布现状及变化趋势[J]. 应用与环境生物学报, 2021, 27(2): 241. DOI: 10.19675/j.cnki.1006-687x.2021.01029.
    [6]
    何翠翠, 魏志远, 张文, 等. 海南岛芒果主产区果园氮素盈余状况研究[J]. 土壤通报, 2020, 51(4): 943. DOI: 10.19336/j.cnki.trtb.2020.04.25.
    [7]
    CHEW J, ZHU L L, NIELSEN S, et al. Biochar-based fertilizer: supercharging root membrane potential and biomass yield of rice[J]. Science of the Total Environment, 2020, 713: 136431. DOI: 10.1016/j.scitotenv.2019.136431.
    [8]
    QUAN G X, FAN Q Y, ZIMMERMAN A R, et al. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products[J]. Journal of Hazardous Materials, 2020, 382: 121071. DOI: 10.1016/j.jhazmat.2019.121071.
    [9]
    何秀峰, 赵丰云, 于坤, 等. 生物炭对葡萄幼苗根际土壤养分、酶活性及微生物多样性的影响[J]. 中国土壤与肥料, 2020(6): 19. DOI: 10.11838/sfsc.1673-6257.19450.
    [10]
    张燕林, 黄彩凤, 包明琢, 等. 生物炭及其老化对杉木林土壤养分含量和微生物群落组成影响的室内模拟[J]. 林业科学, 2021, 57(6): 169. DOI: 10.11707/j.1001-7488.20210619.
    [11]
    YAO Q, LIU J J, YU Z H, et al. Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China[J]. Applied Soil Ecology, 2017, 113: 11. DOI: 10.1016/j.apsoil.2017.01.007.
    [12]
    MUHAMMAD N, DAI Z M, XIAO K C, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226/227: 270. DOI: 10.1016/j.geoderma.2014.01.023.
    [13]
    田孝志, 徐龙晓, 宋建飞, 等. 稻壳炭对紧实土壤中苹果根系硫同化酶活性、H2S含量及根系构型的影响[J]. 植物营养与肥料学报, 2021, 27(5): 869. DOI: 10.11674/zwyf.20532.
    [14]
    高文慧, 郭宗昊, 高科, 等. 生物炭与炭基肥对大豆根际土壤细菌和真菌群落的影响[J]. 生态环境学报, 2021, 30(1): 205. DOI: 10.16258/j.cnki.1674-5906.2021.01.024.
    [15]
    肖茜, 张洪培, 沈玉芳, 等. 生物炭对黄土区土壤水分入渗、蒸发及硝态氮淋溶的影响[J]. 农业工程学报, 2015, 31(16): 128. DOI: 10.11975/j.issn.1002-6819.2015.16.018.
    [16]
    王茜. 植物根系分形维数测定的改进及应用[D]. 阜新: 辽宁工程技术大学, 2014.
    [17]
    EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996. DOI: 10.1038/nmeth.2604.
    [18]
    QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590. DOI: 10.1093/nar/gks1219.
    [19]
    ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389. DOI: 10.1093/nar/25.17.3389.
    [20]
    杨书申, 邵龙义. MATLAB环境下图像分形维数的计算[J]. 中国矿业大学学报, 2006, 35(4): 478. DOI: 10.3321/j.issn:1000-1964.2006.04.011.
    [21]
    AHMED A, KURIAN J, RAGHAVAN V. Biochar influences on agricultural soils, crop production, and the environment: a review[J]. Environmental Reviews, 2016, 24(4): 495. DOI: 10.1139/er-2016-0008.
    [22]
    王娟, 黄成真. 生物炭对土壤改良效果的研究进展[J]. 水资源与水工程学报, 2020, 31(3): 246. DOI: 10.11705/j.issn.1672-643X.2020.03.36.
    [23]
    CHINTALA R, SCHUMACHER T E, KUMAR S, et al. Molecular characterization of biochars and their influence on microbiological properties of soil[J]. Journal of Hazardous Materials, 2014, 279: 244. DOI: 10.1016/j.jhazmat.2014.06.074.
    [24]
    王玲玲, 曹银贵, 王凡, 等. 生物炭对重构土壤化学性质及苜蓿抗旱性的影响[J]. 水土保持研究, 2021, 28(6): 105. DOI: 10.13869/j.cnki.rswc.2021.06.009.
    [25]
    郭俊娒, 姜慧敏, 张建峰, 等. 玉米秸秆炭还田对黑土土壤肥力特性和氮素农学效应的影响[J]. 植物营养与肥料学报, 2016, 22(1): 67. DOI: 10.11674/zwyf.14575.
    [26]
    QUAGGIO J A, SOUZA T R, ZAMBROSI F, et al. Citrus fruit yield response to nitrogen and potassium fertilization depends on nutrient-water management system[J]. Scientia Horticulturae, 2019, 249: 329. DOI: 10.1016/j.scienta.2019.02.001.
    [27]
    白翠华, 周昌敏, 王祥和, 等. 荔枝钾氮肥滴施比例及施肥方式对土壤pH和盐分的影响[J]. 土壤通报, 2021, 52(5): 1104. DOI: 10.19336/j.cnki.trtb.2020112501.
    [28]
    LIU Y X, LU H H, YANG S M, et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161. DOI: 10.1016/j.fcr.2016.03.003.
    [29]
    赵海涛, 封克, 汪晓丽, 等. 连续施磷条件下渗育性水稻土无机磷土层分布及移动特征[J]. 植物营养与肥料学报, 2007, 13(1): 33. DOI: 10.3321/j.issn:1008-505X.2007.01.006.
    [30]
    岳小松, 张影, 刘星, 等. 水洗生物炭对2种类型土壤钾素淋失的影响[J]. 水土保持学报, 2021, 35(5): 108. DOI: 10.13870/j.cnki.stbcxb.2021.05.016.
    [31]
    悦飞雪, 李继伟, 王艳芳, 等. 生物炭和AM真菌提高矿区土壤养分有效性的机理[J]. 植物营养与肥料学报, 2019, 25(8): 1325. DOI: 10.11674/zwyf.18511.
    [32]
    SONG X N, RAZAVI B S, LUDWIG B, et al. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity[J]. Science of the Total Environment, 2020, 735: 139393. DOI: 10.1016/j.scitotenv.2020.139393.
    [33]
    KHEIRFAM H, SADEGHI S H, HOMAEE M, et al. Quality improvement of an erosion-prone soil through microbial enrichment[J]. Soil & Tillage Research, 2017, 165: 230. DOI: 10.1016/j.still.2016.08.021.
    [34]
    白雪, 李小英, 邱宗海. 添加生物炭与菌肥的复合基质对元宝枫幼苗生长的影响[J]. 西南林业大学学报(自然科学), 2020, 40(4): 14. DOI: 10.11929/j.swfu.201912032.
    [35]
    汪洪, 金继运, 山内章. 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系[J]. 作物学报, 2008, 34(9): 1637. DOI: 10.3321/j.issn:0496-3490.2008.09.021.
    [36]
    刘秀. 红树林地上凋落物和细根对土壤有机质的相对贡献[D]. 北京: 中国林业科学研究院, 2018.
    [37]
    XU N, TAN G C, WANG H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1. DOI: 10.1016/j.ejsobi.2016.02.004.
    [38]
    王立夫, 赵淑雯, 李杉杉, 等. 不同阴离子钠盐对土壤Cd形态与微生物群落的影响[J]. 中国环境科学, 2021, 41(9): 4221. DOI: 10.3969/j.issn.1000-6923.2021.09.029.
    [39]
    王思宇, 李军, 王秀杰, 等. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 2017, 37(12): 4649. DOI: 10.3969/j.issn.1000-6923.2017.12.030.
    [40]
    BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386. DOI: 10.1016/j.ympev.2014.04.024.
    [41]
    RAYA-DÍAZ S, QUESADA-MORAGA E, BARRÓN V, et al. Redefining the dose of the entomopathogenic fungus Metarhizium brunneum (Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils[J]. Plant and Soil, 2017, 418(1/2): 387. DOI: 10.1007/s11104-017-3303-0.
    [42]
    REN X H, SUN H W, WANG F, et al. The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months[J]. Chemosphere, 2016, 144: 2257. DOI: 10.1016/j.chemosphere.2015.10.132.
    [43]
    池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1. DOI: 10.3969/j.issn.1005-7021.2021.01.001.
    [44]
    张亮, 盛浩, 袁红, 等. 根际促生菌防控土传病害的机理与应用进展[J]. 土壤通报, 2018, 49(1): 220. DOI: 10.19336/j.cnki.trtb.2018.01.30.
  • Cited by

    Periodical cited type(8)

    1. 黄英梅,梁春梅,许昌超,张俊涛. 椰壳生物炭添加对土壤理化性质及水稻生长的影响. 江西农业学报. 2025(01): 1-10 .
    2. 覃潇敏,潘浩男,环秀菊,周彩霞,韦巧云,蒋娟娟,郭李怡,郭素云,丁家东,徐健. 生物炭对菠萝连作土壤微生物学特性及其心腐病的影响. 中国土壤与肥料. 2024(02): 65-71 .
    3. 侯建伟,邢存芳,杨莉琳,吴朝都,赵辉,段玉,颜学佳. 生物炭与有机肥等碳量投入土壤肥力与细菌群落结构差异及关系. 环境科学. 2024(07): 4218-4227 .
    4. 杨怡,迭鹏翔,张松彦,周建. 生物炭对盐碱条件下海滨锦葵根系生长及土壤特性的影响. 现代农业科技. 2024(13): 90-94+115 .
    5. 傅志强,刘祯,马春花,温梦玲,奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响. 浙江农业学报. 2024(07): 1634-1645 .
    6. 黄锡志,王朝丽,袁昕,冯敏芳,朱燕,唐红丽,王潇璇. 不同配方施肥对莲藕土壤和田面水理化性质及产量的影响. 浙江农业科学. 2024(10): 2266-2272 .
    7. 任志超,穆耀辉,匡志豪,李淑娥,张永峰,任天宝,殷全玉,刘国顺. 哈茨木霉配施高碳基肥对植烟土壤理化性质和细菌群落结构的影响. 江苏农业科学. 2023(08): 223-231 .
    8. 朱德伦,周文瑾,贾孟,朱宣全,杜宇,王娜,周鹏,杨焕文,白羽祥,王戈. 烟秆生物质炭基肥对烤烟生理特性及土壤主要环境因子的影响. 南方农业学报. 2023(03): 867-876 .

    Other cited types(7)

Catalog

    Article views (8534) PDF downloads (47) Cited by(15)