Loading [MathJax]/jax/output/SVG/jax.js
  • Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Pei LIU, Dan WANG, Xianqi HU. Study on the Magnesium Toxicity Inhibits Jasmonic Acid Signaling Pathway and Increases Arabidopsis Sensitivity to Meloidogyne incognita[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(2): 220-227. DOI: 10.12101/j.issn.1004-390X(n).202109039
Citation: Pei LIU, Dan WANG, Xianqi HU. Study on the Magnesium Toxicity Inhibits Jasmonic Acid Signaling Pathway and Increases Arabidopsis Sensitivity to Meloidogyne incognita[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(2): 220-227. DOI: 10.12101/j.issn.1004-390X(n).202109039

Study on the Magnesium Toxicity Inhibits Jasmonic Acid Signaling Pathway and Increases Arabidopsis Sensitivity to Meloidogyne incognita

More Information
  • Received Date: September 26, 2021
  • Revised Date: February 22, 2022
  • Accepted Date: February 23, 2022
  • Available Online: March 01, 2022
  • Published Date: March 29, 2022
  • PurposeTo study the changes of physiological processes in Arabidopsis under the stress of magnesium toxicity and the change of sensitivity of Arabidopsis in response to Meloidogyne incognita infection, and related molecular mechanisms.
    MethodsThe poor nutrient culture medium vermiculite was used in pot experiments to conduct chlorophyll synthesis change analysis of Arabidopsis under the stress of magnesium toxicity (15 mmol/L MgCl2), and to analyze the change in resistance or sensitivity of Arabidopsis to M. incognita infection. Through the transcriptome sequencing strategy, the relationships between the up- and down-regulated genes of Arabidopsis under the stress of magnesium toxicity was analyzed. Real-time fluorescence quantitative PCR (qPCR) were performed to verify the expressions of genes with significant differences.
    ResultsUnder the stress of magnesium toxicity, the chlorophyll synthesis of Arabidopsis was significantly affected, the content of chlorophyll in leaves with magnesium toxicity treatment was significantly or extremely significantly lower than control (P<0.05 or P<0.01). Thirty days after inoculations, the numbers of females and galls developed in roots of Arabidopsis under magnesium toxicity treatment were significantly higher than control (P<0.05). It indicated that magnesium toxicity increased the sensitivity of Arabidopsis to nematodes. Transcriptome sequencing data revealed eight up-regulated genes involving in amino acid, carbohydrate, lipid, and vitamin metabolism, etc. And beyond down-regulated genes, there were five genes simultaneously belonged to signal transduction pathway, and involving in the bio-synthesis of jasmonic acid and the signal transduction of jasmonic acid mediate defense responses. Through qPCR verifications using two independent internal control genes, the expression trend of genes with significant expression changes were consistent with transcriptome sequencing data.
    ConclusionThe stress of magnesium toxicity interferes with the normal physiological processes of Arabidopsis indicated through the chlorophyll synthesis, inhibits expressions of critical genes related to jasmonic acid bio-synthesis and signal transduction, increases the sensitivity of Arabidopsis to M. incognita. Magnesium may play an important role in the jasmonic acid mediated defense responses against M. incognita.
  • [1]
    慕康国, 赵秀琴, 李健强, 等. 矿质营养与植物病害关系研究进展[J]. 中国农业大学学报, 2000, 5(1): 84. DOI: 10.3321/j.issn:1007-4333.2000.01.016.
    [2]
    武维华. 植物生理学[M]. 3版. 北京: 科学出版社, 2018.
    [3]
    王芳, 刘鹏, 徐根娣. 土壤中的镁及其有效性研究概述[J]. 河南农业科学, 2004(1): 33. DOI: 10.3969/j.issn.1004-3268.2004.01.011.
    [4]
    HERMANS C, VERBRUGGEN N. Physiological characterization of Mg deficiency in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2005, 56(418): 2153. DOI: 10.1093/jxb/eri215.
    [5]
    GUO W L, CONG Y X, HUSSAIN N, et al. The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis[J]. Plant and Cell Physiology, 2014, 55(10): 1713. DOI: 10.1093/pcp/pcu102.
    [6]
    GUO W L, CHEN S N, HUSSAIN N, et al. Magnesium stress signaling in plant: just a beginning[J]. Plant Signaling & Behavior, 2015, 10(3): e992287. DOI: 10.4161/15592324.2014.992287.
    [7]
    REZA M H, SHAH H, MANJREKAR J, et al. Magnesium uptake by CorA transporters is essential for growth, development and infection in the rice blast fungus Magnaporthe oryzae[J]. PLoS One, 2016, 11(7): e159244. DOI: 10.1371/journal.pone.0159244.
    [8]
    HUBER D, JONES J. The role of magnesium in plant disease[J]. Plant and Soil, 2013, 368: 73. DOI: 10.1007/s11104-012-1476-0.
    [9]
    李丹萍. 不同镁肥在土壤中的迁移淋洗及其生物有效性研究[D]. 重庆: 西南大学, 2018.
    [10]
    马建梅. 使用钾肥对土壤中钙、镁有效性及其效应的影响[D]. 银川: 宁夏大学, 2021.
    [11]
    JONES J T, HAEGEMAN A, DANCHIN E G, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology, 2013, 14(9): 946. DOI: 10.1111/mpp.12057.
    [12]
    HOGENHOUT S A, VAN DER HOORN R A, TERAUCHI R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interaction, 2009, 22(2): 115. DOI: 10.1094/mpmi-22-2-0115.
    [13]
    刘沛. 南方根结线虫MiMsp40效应子与寄主STZ互作调控免疫的机理研究[D]. 北京: 中国农业大学, 2017.
    [14]
    PERRY R N, MOENS M. 植物线虫学[M]. 简恒主译. 北京: 中国农业大学出版社, 2011.
    [15]
    GOVERSE A, SMANT G. The activation and suppression of plant innate immunity by parasitic nematodes[J]. Annual Review of Phytopathology, 2014, 52: 243. DOI: 10.1146/annurev-phyto-102313-050118.
    [16]
    MURASHIGE T, SKOOG F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473. DOI: 10.1111/j.1399-3054.1962.tb08052.x.
    [17]
    梁艳. 元谋番茄产区根结线虫鉴定及生物有机肥对其调控的初步研究[D]. 昆明: 云南农业大学, 2018.
    [18]
    NIU J H, LIU P, LIU Q, et al. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism[J]. Scientific Reports, 2016, 6: 19443. DOI: 10.1038/srep19443.
    [19]
    刘维志. 植物病原线虫学[M]. 北京: 中国农业出版社, 2000.
    [20]
    LU K, LI T, HE J, et al. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms[J]. Nucleic Acids Research, 2017, 46(D1): D1229. DOI: 10.1093/nar/gkx725.
    [21]
    HAN B, YANG Z, SAMMA M K, et al. Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis[J]. BioMetals, 2013, 26(3): 403. DOI: 10.1007/s10534-013-9623-5.
    [22]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method[J]. Methods, 2001, 25(4): 402. DOI: 10.1006/meth.2001.1262.
    [23]
    凌丽俐, 黄翼, 彭良志, 等. 镁缺乏和过量胁迫对纽荷尔脐橙叶绿素荧光特性的影响[J]. 生态学报, 2014, 34(7): 1672. DOI: 10.5846/stxb201304250813.
    [24]
    VANDOORN A, BONAVENTURE G, SCHMIDT D D, et al. Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum: COI1 and JAR4 play overlapping yet distinct roles[J]. New Phytologist, 2011, 190(3): 640. DOI: 10.1111/j.1469-8137.2010.03622.x.
    [25]
    ROSAHL S, FEUSSNER I. Oxylipins[M]//MURPHY D J. Plant lipids: biology, utilisation and manipulation. Oxford and Boca Raton: Blackwell Publishing Ltd./CRC Press, 2004.
    [26]
    NAHAR K, KYNDT T, DE VLEESSCHAUWER D, et al. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiology, 2011, 157(1): 305. DOI: 10.1104/pp.111.177576.
    [27]
    FUJIMOTO T, TOMITAKA Y, ABE H, et al. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate[J]. Journal of Plant Physiology, 2011, 168(10): 1084. DOI: 10.1016/j.jplph.2010.12.002.
    [28]
    BHATTARAI K K, XIE Q G, MANTELIN S, et al. Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway[J]. Molecular Plant-Microbe Interaction, 2008, 21(9): 1205. DOI: 10.1094/MPMI-21-9-1205.
  • Related Articles

    [1]XIE Zhijun, SHI Mingming, WU Jin, ZHANG Ling, CHEN Jinghuan, LI Huixia. Population Dynamics and Generation Cycle of Meloidogyne hapla on Codonopsis pilosula[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(3): 40-45. DOI: 10.12101/j.issn.1004-390X(n).202212033
    [2]Zhuhua WANG, Wenpeng WANG, Yibin LIU, Chunhe JIANG, Kuan YANG, Youyong ZHU, Yang WANG, Xiahong HE. Investigation and Infection Source Analysis of Root Knot Nematode Disease of Panax notoginseng in Lancang County, Yunnan Province[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(1): 60-68. DOI: 10.12101/j.issn.1004-390X(n).202004016
    [3]Mengjun HU, Xianqi HU, Pei LIU, Yan LIANG, Yanmei YANG. Optimization of the Fermentation Conditions of Actinomycete Strain 1331 and Its Effects on Meloidogyne incognita[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(2): 213-220. DOI: 10.12101/j.issn.1004-390X(n).201805023
    [4]XU Xingyang, YANG Yanmei, DUAN Yongming, HU Xianqi, ZHANG Junwen. Preliminary Identification of the Root-knot Nematode from Tobacco in Kunming Region[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(5): 947-951. DOI: 10.16211/j.issn.1004-390X(n).2017.05.027
    [5]FU Lixin, XIE Guihua, TAO Lihong, JIANG Shanshan, WANG Kaibo, WANG Yang, YE Min. Study on Thymol against Meloidogyne javanica[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 68-71. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.013
    [6]LI Weifen, HE Jiangming, HU Xianqi. Preliminary Discription of Parasites Nematode on Flower in Yunnan[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 52-56. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.010
    [7]ZHOU Yinli, YUAN Shaojie, YANG Yanmei, HU Xianqi. Studies on Pomegranate Wilt Pathogen Antagonism Actinomycete MZ11 Nematicidal Activity[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 46-51. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.009
    [8]ZHOU Yinli, YANG Wei, BAI Jianbo, CHEN Guangqin, HU Xianqi. Investigations of Tobacco Root-knot Nematode in Mengzi City[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 36-39. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.007
    [9]SONG Jie, HU Xianqi. Molecular Identification of the Root-knot Nematodes Species in the Parts of Southwest China[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 6-11. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.002
    [10]CHEN Li, HU Xianqi, YANG Shengchao, HOU Xing, HUANG Yueyi. Identification of a New Root-knot Nematode Disease on Marsdenia tenacissima(Roxb.) Wight et Am[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2016, 31(S1): 1-5. DOI: 10.16211/j.issn.1004-390X(n).2016.S1.001
  • Cited by

    Periodical cited type(1)

    1. 徐哲丰,刘春铄,廖旭东,隋佳宏,陈雨秋,陈长宝,张涛,魏丽娜. 生态因子对林地参和农田参质量差异的影响. 中国农业科技导报. 2024(09): 213-223 .

    Other cited types(0)

Catalog

    Article views (3185) PDF downloads (45) Cited by(1)