• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Hongyan HU, Yunan CHEN, Xianpeng SONG, et al. Control Effect on Cotton Aphids of Nanopesticide Sprayed with Plant Protection Unmanned Aerial Vehicles in Cotton Field[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(1): 54-60. DOI: 10.12101/j.issn.1004-390X(n).202106023
Citation: Hongyan HU, Yunan CHEN, Xianpeng SONG, et al. Control Effect on Cotton Aphids of Nanopesticide Sprayed with Plant Protection Unmanned Aerial Vehicles in Cotton Field[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(1): 54-60. DOI: 10.12101/j.issn.1004-390X(n).202106023

Control Effect on Cotton Aphids of Nanopesticide Sprayed with Plant Protection Unmanned Aerial Vehicles in Cotton Field

More Information
  • Received Date: June 24, 2021
  • Revised Date: September 15, 2021
  • Available Online: December 03, 2021
  • Published Date: January 30, 2022
  • PurposeTo explore droplet deposition and control effect of nanopesticide on cotton aphids, spray tests were carried out by plant protection unmanned aerial vehicle (UAV) in cotton field (seedling stage).
    MethodsNanopesticide (3.5% acetamiprid) and conventional pesticide (5% acetamiprid and 2.5% lambda-cyhalothrin) were sprayed by Anyang Quanfeng 3WQF120-12 UAV under two flight heights (1.5 and 2.5 m). Allura red was used as a tracer in determination of droplet deposition and pesticide utilization. The droplet density and coverage rate were analyzed by image processing software Image J.
    ResultsThere was no significant difference in droplet deposition density and coverage rate on cotton when conventional pesticide or nanopesticide sprayed by UAV at flight height of 1.5 m and 2.5 m (P>0.05). The droplet density (73.84-95.12 cm−2) and coverage rate (1.92%-3.22%) of nanopesticide were lower than those of conventional pesticide (108.57-116.59 cm−2 and 3.86%-4.08%). The utilization rate (2.39%-2.75%) of nanopesticide spraying was lower than that of conventional pesticide (3.89%-4.09%). Nanopesticide droplets had smaller particle size, and seven days after application, the efficacies of nanopesticide sprayed by UAV (89.79%-95.23%) were significantly higher than those of conventional pesticide (70.52%-79.01%) (P<0.05). The control effect of cotton aphid reached the level of manual spray at the height of 1.5 m.
    ConclusionIn the seedling stage of cotton, 3.5% acetamiamidine·beta-cyhalothrin nanometer pesticide sprayed by UAV at a height of 1.5 m can effectively control cotton aphid, which can be widely applied in the field.
  • [1]
    马小艳, 王志国, 姜伟丽, 等. 无人机飞防技术现状及在我国棉田应用前景分析[J]. 中国棉花, 2016, 43(6): 7. DOI: 10.11963/issn.1000-632X.201606002.
    [2]
    焦雨轩, 薛新宇, 丁素明, 等. 不同植保机械施药对棉蚜防效的影响[J]. 农机化研究, 2022, 44(3): 159. DOI: 10.13427/j.cnki.njyi.2022.03.029.
    [3]
    袁会珠, 王中群, 孙瑞红, 等. 喷洒部件及喷雾助剂对担架式喷雾机在田园喷雾中的雾滴沉积分布的影响[J]. 植物保护, 2010, 36(1): 106. DOI: 10.3969/j.issn.0529-1542.2010.01.024.
    [4]
    张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53. DOI: 10.6041/j.issn.1000-1298.2014.10.009.
    [5]
    陈盛德, 兰玉彬, BRADLEY K F, 等. 多旋翼无人机旋翼下方风场对航空喷施雾滴沉积的影响[J]. 农业机械学报, 2017, 48(8): 105. DOI: 10.6041/j.issn.1000-1298.2017.08.011.
    [6]
    刘德江, 龚艳, 王果, 等. 果园航空喷雾的农药沉积分布比较[J]. 江苏农业科学, 2018, 46(6): 207. DOI: 10.15889/j.issn.1002-1302.2018.06.054.
    [7]
    WANG G B, LAN Y B, YUAN H Z, et al. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers[J]. Applied Sciences, 2019, 9(2): 218. DOI: 10.3390/app9020218.
    [8]
    秦维彩, 薛新宇, 周立新, 等. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 3(5): 50. DOI: 10.3969/j.issn.1002-6819.2014.05.007.
    [9]
    QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Protection, 2016, 85: 79. DOI: 10.1016/j.cropro.2016.03.018.
    [10]
    TANG Y, HOU C J, LUO S M, et al. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle[J]. Computers and Electronics in Agriculture, 2018, 148: 1. DOI: 10.1016/j.compag.2018.02.026.
    [11]
    袁会珠, 薛新宇, 闫晓静, 等. 植保无人飞机低空低容量喷雾技术应用与展望[J]. 植物保护, 2018, 44(5): 152. DOI: 10.16688/j.zwbh.2018307.
    [12]
    陈鹏超. 植保无人机机型和喷头对雾滴沉积效果的试验研究[D]. 广州: 华南农业大学, 2018.
    [13]
    陈晓, 刘德江, 王果, 等. 喷雾参数及助剂类型对植保无人飞机在棉花中期喷雾雾滴沉积分布的影响[J]. 农药学学报, 2020, 22(2): 347. DOI: 10.16801/j.issn.1008-7303.2020.0051.
    [14]
    LIAO J, ZANG Y, LUO X W, et al. The relations of leaf area index with the spray quality and efficacy of cotton defoliant spraying using unmanned aerial systems (UASs)[J]. Computers and Electronics in Agriculture, 2020, 169: 105228. DOI: 10.1016/j.compag.2020.105228.
    [15]
    吴金龙, 冯宏祖, 马小艳, 等. 棉田棉蚜飞防药剂筛选及农药减量增效药效分析[J]. 新疆农业科学, 2020, 57(1): 167. DOI: 10.6048/j.issn.1001-4330.2020.01.019.
    [16]
    韩鹏, 崔宗胤, 闫晓静, 等. 三类喷雾助剂在植保无人飞机精准果树作业模式下对丘陵柑橘雾滴沉积分布的影响[J]. 农药学学报, 2020, 22(6): 1076. DOI: 10.16801/j.issn.1008-7303.2020.0115.
    [17]
    郭勇飞, 张小军. 纳米农药研究进展[J]. 世界农药, 2021, 43(4): 1.
    [18]
    GAO Y H, LI D L, LI D Y, et al. Efficacy of an adhesive nanopesticide on insect pests of rice in field trials[J]. Journal of Asia-Pacific Entomology, 2020, 23(4): 1222. DOI: 10.1016/J.ASPEN.2020.08.013.
    [19]
    肖汉祥, 周振标, 陆世忠, 等. 植保无人机喷施纳米农药防治水稻稻飞虱和稻纵卷叶螟示范试验[J]. 现代农业科技, 2019(22): 58.
    [20]
    赵莲英. 植保无人机喷施纳米农药防治水稻主要病虫的药效评价[J]. 安徽农业科学, 2020, 48(14): 144. DOI: 10.3969/j.issn.0517-6611.2020.14.040.
    [21]
    刘明云, 魏书艳, 纪莲莲, 等. 无人机喷雾防治棉蚜药剂筛选及助剂增效作用研究[J]. 中国棉花, 2020, 47(2): 9. DOI: 10.11963/1000-632X.lmylmy.20200205.
    [22]
    王喆, 冯宏祖, 马小艳, 等. 无人机施药对棉蚜的防治效果及经济效益分析[J]. 农药学学报, 2019, 21(3): 366. DOI: 10.16801/j.issn.1008-7303.2019.0043.
    [23]
    胡红岩, 任相亮, 姜伟丽, 等. 植保无人机棉田喷洒农药沉积分布研究[J]. 华中农业大学学报, 2018, 37(5): 59. DOI: 10.13300/j.cnki.hnlkxb.20180622.007.
    [24]
    HU H Y, REN X L, MA X Y, et al. Control effect on cotton aphids of insecticides sprayed with unmanned aerial vehicles under different flight heights and spray volumes[J]. International Journal of Precision Agricultural Aviation, 2021, 4(1): 44. DOI: 10.33440/j.ijpaa.20210401.161.
    [25]
    石鑫, 高赛超, 杨代斌, 等. 农药沉积利用率喷雾指示剂诱惑红的酶标仪测定方法[J]. 现代农药, 2021, 20(1): 35. DOI: 10.3969/j.issn.1671-5284.2021.01.007.
    [26]
    袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9. DOI: 10.3969/j.issn.0529-1542.2015.06.002.
    [27]
    陈吟, 齐浩亮, 张龙, 等. 大田环境中不同助剂和喷头对无人机喷洒雾滴分布和漂移的影响[J]. 华南农业大学学报, 2020, 41(6): 50. DOI: 10.7671/j.issn.1001-411X.202007037.
    [28]
    袁会珠, 郭永旺, 薛新宇, 等. 植保无人飞机的推广应用对于提高我国农药利用率的作用[J]. 农业工程技术, 2018, 38(9): 46. DOI: 10.16815/j.cnki.11-5436/s.2018.09.008.
    [29]
    王浩祺, 王萌, 罗兰, 等. 白菜田不同药械的雾滴分布与农药利用率[J]. 农业技术与装备, 2021(1): 46. DOI: 10.3969/j.issn.1673-887X.2021.01.019.

Catalog

    Article views (8538) PDF downloads (27) Cited by()