• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Huanhuan CHANG, Youbo SU, Maopan FAN, et al. Effects of Maize and Soybean Intercropping on the Function and Structure of Rhizosphere Microbial Community[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(2): 336-343. DOI: 10.12101/j.issn.1004-390X(n).202103088
Citation: Huanhuan CHANG, Youbo SU, Maopan FAN, et al. Effects of Maize and Soybean Intercropping on the Function and Structure of Rhizosphere Microbial Community[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(2): 336-343. DOI: 10.12101/j.issn.1004-390X(n).202103088

Effects of Maize and Soybean Intercropping on the Function and Structure of Rhizosphere Microbial Community

More Information
  • Received Date: March 25, 2021
  • Revised Date: December 30, 2021
  • Accepted Date: February 22, 2022
  • Available Online: March 08, 2022
  • Published Date: March 29, 2022
  • PurposeTo reveal the change rules of rhizosphere microbial community function and structure under the interaction of two crops in the intercropping system of maize (Zea mays L.) and soybean (Glycine max).
    MethodFunction and structure of rhizosphere microbial communities in maize tasseling stage/soybean flowering pod stage were analyzed synchronously by BIOLOG and high throughput sequencing technology under maize and soybean intercropping field plot experiment.
    Results1) Microbial community carbon source metabolic function diversity of soybean rhizosphere was higher than that of maize. Compared with monoculture of each other, Shannon index of intercropped maize was significantly increased by 3.5% (P<0.05), Simpson index significantly decreased by 13.1% (P<0.05), while Simpson index of intercropped soybean was significantly increased by 7.8% (P<0.05), which made the each other became similar. 2) Compared with monoculture, the total amount of detectable bacteria in maize rhizosphere increased significantly after intercropping (P<0.05), while the total amount of detectable bacteria in soybean showed a decreasing trend (P>0.05). However, there was no significant change in species diversity and genetic diversity (P>0.05). Under the influence of interspecific interaction, there were new species in the rhizosphere bacterical community of both species. As for species composition convergence and variation coexist. 3) Compared with monoculture, the relative abundance of Armatimonadetes in rhizosphere increased significantly in maize and soybean intercropping system (P<0.05), but there was no significant difference in other dominant groups (P>0.05). The relative abundance of Acidobacteria changed from insignificant (P>0.05) to significant (P<0.05) under the interaction of maize and soybean, while the relative abundance of Gemmatimonadetes, Gemmatimonas, Gaiella, Ktedonobacter and Rhodanobacter changed from significant (P<0.05) to insignificant (P>0.05) under the interaction of maize and soybean.
    ConclusionThe function and structure of rhizosphere microbial community were changed by maize and soybean intercropping. Convergence coexists with divergence, mainly with convergence.
  • [1]
    KIERSZTYN B, CHRÓST R, KALIŃSKI T, et al. Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure[J]. Scientific Reports, 2019, 9(1): 11144. DOI: 10.1038/s41598-019-47577-8.
    [2]
    SHRESTHA P, GAUTAM R, ASHWATH N. Effects of agronomic treatments on functional diversity of soil microbial community and microbial activity in a revegetated coal mine spoil[J]. Geoderma, 2019, 338: 40. DOI: 10.1016/j.geoderma.2018.11.038.
    [3]
    TENG Z H, FAN W, WANG H L, et al. Monitoring soil microorganisms with community-level physiological profiles using Biolog EcoPlatesTM in Chaohu Lakeside Wetland, East China[J]. Eurasian Soil Science, 2020, 53(8): 1142. DOI: 10.1134/S1064229320080141.
    [4]
    FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570. DOI: 10.1126/science.1111772.
    [5]
    YU Y, STOMPH T, MAKOWSKI D, et al. A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management[J]. Field Crops Research, 2016, 198: 269. DOI: 10.1016/j.fcr.2016.08.001.
    [6]
    ZHU Y Y, CHEN H R, FAN J H. et al. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797): 718. DOI: 10.1038/35021046.
    [7]
    JENSEN E S, CARLSSON G, NIELSEN H H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: a global-scale analysis[J]. Agronomy for Sustainable Development, 2020, 40: 5. DOI: 10.1007/s13593-020-0607-x.
    [8]
    DU J B, HAN T F, GAI J Y, et al. Corn-soybean strip intercropping: achieved a balance between high productivity and sustainability[J]. Journal of Integrative Agriculture, 2017, 16: 60345. DOI: 10.1016/S2095-3119(17)61789-1.
    [9]
    SHARMA N K, RAMAN J S, MANDAL D, et al. Increasing farmer ’s income and reducing soil erosion using intercropping in rainfed corn-wheat rotation of Himalaya, India[J]. Agriculture, Ecosystem and Environment, 2017, 247: 43. DOI: 10.1016/j.agee.2017.06.026.
    [10]
    AARON L I, LINDA E M, KATHERINE K E, et al. Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis[J]. Journal of Applied Ecology, 2014, 51: 1593. DOI: 10.1111/1365-2664.12334.
    [11]
    董宇飞, 吕相漳, 张自坤, 等. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485. DOI: 10.3969/j.issn.1004-1524.2019.09.12.
    [12]
    董艳, 董坤, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆枯萎病的防治及其机理[J]. 应用生态学报, 2014, 25(7): 1979.
    [13]
    马琨, 杨桂丽, 马玲, 等. 间作栽培对连作马铃薯根际土壤微生物群落的影响[J]. 生态学报, 2016, 36(10): 2987. DOI: 10.5846/stxb201412072425.
    [14]
    刘丽, 杨静, 李成云. 玉米—大豆间作对玉米根际氨氧化微生物的影响[J]. 江苏农业学报, 2017, 33(6): 1278. DOI: 10.3969/j.issn.1000-4440.2017.06.012.
    [15]
    杨永华, 姚健, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响[J]. 微生物学杂志, 2000, 20(2): 23.
    [16]
    HARCH B D, CORRELL R L, MEECH W, et al. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil communities[J]. Journal of Microbilogical Methods, 1997, 30: 91. DOI: 10.1016/S0167-7012(97)00048-1.
    [17]
    覃潇敏, 郑毅, 汤利, 等. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J]. 作物学报, 2015, 41(6): 919. DOI: 10.3724/SP.J.1006.2015.00919.
    [18]
    董艳, 董坤, 汤利, 等. 小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系[J]. 生态学报, 2013, 33(23): 7445. DOI: 10.5846/stxb201208281214.
    [19]
    郑亚强, 张立敏, 杨进成, 等. 甘蔗间作玉米对甘蔗根际微生物代谢功能多样性的影响[J]. 中国生态农业学报, 2016, 24(5): 618. DOI: 10.13930/j.cnki.cjea.151149.
    [20]
    周泉, 王龙昌, 邢毅, 等. 间作紫云英下油菜根际土壤微生物群落功能特征[J]. 应用生态学报, 2018, 29(3): 909. DOI: 10.13287/j.1001-9332.201803.031.
    [21]
    张萌萌, 敖红, 李鑫, 等. 桑树/苜蓿间作对根际土壤酶活性和微生物群落多样性的影响[J]. 草地学报, 2015, 23(2): 302. DOI: 10.1173/j.issn.1007-0435.2015.02.013.
    [22]
    DOHRMANN A B, KÜTING M, JÜNEMANN S, et al. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional corn varieties[J]. The ISME Journal, 2013, 7: 37. DOI: 10.1038/ismej.2012.77.
    [23]
    代真林, 汪娅婷, 姚秀英, 等. 玉米//大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响[J]. 云南农业大学学报(自然科学), 2020, 35(5): 756. DOI: 10.12101/j.issn.1004-390X(n).201910045.
    [24]
    WU K X, FULLEN M A, AN T X, et al. Above- and below-ground interspecific interaction in intercropped corn and potato: a field study using the ‘target’ technique[J]. Field Crops Research, 2012, 139: 63. DOI: 10.1016/j.fcr.2012.10.002.
    [25]
    LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under corn/peanut intercropping[J]. Journal of Integrative Agriculture, 2016, 15(1): 101. DOI: 10.1016/S2095-3119(15)61089-9.
    [26]
    ZHANG N N, SUN Y M, LI L, et al. Effects of intercropping and Rhizobium inoculation on yield and rhizosphere bacterial community of faba bean (Vicia faba L.)[J]. Biology and Fertility of Soils, 2010, 46(6): 625. DOI: 10.1007/s00374-010-0469-5.
    [27]
    ZHOU L J, WANG Y J, XIE Z K, et al. Effects of lily/corn intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor[J]. Journal of Basic Microbiology, 2018, 58(10): 892. DOI: 10.1002/jobm.201800163.
    [28]
    张东艳, 王军, 杨水平, 等. 玄参与烟草间作对土壤细菌群落结构的影响[J]. 草业学报, 2017, 26(6): 120. DOI: 10.11686/cyxb2016507.
    [29]
    FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626. DOI: 10.1073/pnas.0507535103.
    [30]
    JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4): 442. DOI: 10.1038/ismej.2008.127.
    [31]
    YU Z H, YU J, IKENAGA M, et al. Characterization of root-associated bacterial community structures in soybean and corn using locked nucleic acid (LNA) oligonucleotide-PCR clamping and 454 pyrosequencing[J]. Journal of Integrative Agriculture, 2016, 15(8): 1883. DOI: 10.1016/S2095-3119(15)61195-9.
    [32]
    赵卫松, 郭庆港, 李社增, 等. 花铃期棉花黄萎病抗病与感病品种对土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942. DOI: 10.3864/j.issn.0578-1752.2020.05.007.
    [33]
    ROSENZWEIG N, TIEDJE J M, QUENSEN J F, et al. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses[J]. Plant Disease. 2012, 96(5): 718. DOI:10.1094/PDIS-07-11-0571.
    [34]
    SANGUIN H, SARNIGUET A, GAZENGEL K, et al. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture[J]. New Phytologist, 2009, 184(3): 694. DOI: 10.1111/j.1469-8137.2009.03010.x.
  • Cited by

    Periodical cited type(7)

    1. 孙小芳,曾华兰,刘勇,何炼,况再银,代顺冬,华丽霞,蒋秋平. 四川三台县麦冬//玉米间作体系根际微生物多样性及功能分析. 微生物学通报. 2025(01): 290-308 .
    2. 何斐,崔鸣,李川,阮佳,王梦,姜浩,马星光,王卓,丁龙飞,张诗婉,吕恋心. 不同分根条件下魔芋根际土壤真菌群落组成及其功能预测. 西北农林科技大学学报(自然科学版). 2025(02): 118-129 .
    3. 岑福,殷根深,蒋明星,徐福晋,董明华. 邻苯二甲酸酯(PAEs)对不同植物根际微生物群落的影响. 贵州农业科学. 2024(01): 66-73 .
    4. 李媛媛,谢丰璞,王楠,高静,黄文静,李铂,孙晓春,宋忠兴,唐志书,王二欢,马存德. 间作黄芪对当归根际土壤微生物的影响. 中国野生植物资源. 2024(01): 79-86+92 .
    5. 李斌,邓浩亮,潘小番,王玉锦,杨平峰,王丽晶. 河西绿洲灌区玉米与大豆间作行比对产量的影响. 现代农业科技. 2024(21): 19-21+25 .
    6. 霍灿灿,朱栗琼,招礼军,甘远东,黄相玲. 三种罗汉松根际土壤微生物群落功能多样性. 热带农业科学. 2023(02): 1-7 .
    7. 郑娇,刘娟娟,张东华,伍建榕,刘丽. 间作柿子树对苹果根际土壤微生物群落结构和功能的影响. 西南农业学报. 2023(12): 2651-2661 .

    Other cited types(7)

Catalog

    Article views (3319) PDF downloads (40) Cited by(14)