• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Biao LU, Baohai ZHANG, Zidan LUO, et al. Isolation, Identification and Whole Genome Sequence Analysis of a Goat-derived Type 2 Mannheimia haemolytica[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(4): 623-630, 699. DOI: 10.12101/j.issn.1004-390X(n).202003067
Citation: Biao LU, Baohai ZHANG, Zidan LUO, et al. Isolation, Identification and Whole Genome Sequence Analysis of a Goat-derived Type 2 Mannheimia haemolytica[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(4): 623-630, 699. DOI: 10.12101/j.issn.1004-390X(n).202003067

Isolation, Identification and Whole Genome Sequence Analysis of a Goat-derived Type 2 Mannheimia haemolytica

More Information
  • Received Date: March 29, 2020
  • Revised Date: January 04, 2021
  • Available Online: July 18, 2021
  • Published Date: July 30, 2021
  • PurposeTo isolate and identify pathogenic a bacteria that caused serious respiratory diseases and deaths in goats in a large-scale sheep farm in Sichuan Province, and to analyze their pathogenic and drug resistance mechanisms.
    MethodBiochemical tests, pathogenicity tests in mice, drug susceptibility tests, 16S rRNA analysis, capsule serotyping and genome-wide sequencing were went through after isolation and purification of pathogens. Through the sequence, the species typing were analysed and gene function annotations of the isolated strains were carried out.
    ResultThe same bacteria was isolated from the nasal fluid, trachea, lung and liver of dead goat. It was identified as Mannheimia haemolytica capsulatum type 2 and named MHLB002. The LD50 values of the bacteria in mice was 4.4×107 CFU/mL. The drug susceptibility test showed that the M. haemolytica was sensitive to cephalosporins, β-lactamides, sulfonamides and quinolones, and resistant to some macrolides and aminoglycosides. Whole-genome sequence analysis showed that the bacterial genome was 2 580 488 bp in size and the sequence type was ST-43. It had the closest homology with the MH1475 strain, and the average nucleotide identity (ANI) value of the two strains reached 98.60%. There were 19 ORFs in the whole genome encoding MHLB002 genes related to pathogenicity, and 9 ORFs encoding drug-resistant genes.
    ConclusionThe M. haemolytica capsulatum type 2 isolated in this experiment is the pathogenic bacteria that caused serious respiratory diseases and deaths in goats in this farm. It also provides a theoretical basis for the prevention and treatment of goat M. haemolytica.
  • [1]
    张升杨, 李前勇, 张德志, 等. 肉牛溶血性曼氏杆菌的分离鉴定及药敏试验[J]. 西南大学学报(自然科学版), 2017, 39(1): 21. DOI: 10.13718/j.cnki.xdzk.2017.01.004.
    [2]
    陆承平. 兽医微生物学[M]. 北京: 中国农业出版社, 2013.
    [3]
    王振. 规模化羊场细菌病的流行病学调查及细菌性病原的分离鉴定和系统进化分析[D]. 泰安: 山东农业大学, 2015.
    [4]
    张兴军, 杨新明, 刘斌. 羊支原体肺炎的流行特点、临床症状、诊断及防治[J]. 现代畜牧科技, 2018(8): 67. DOI: 10.19369/j.cnki.2095-9737.2018.08.059.
    [5]
    李翠萍, 吴民耀, 王宏元. 3种半数致死浓度计算方法之比较[J]. 动物医学进展, 2012, 33(9): 89. DOI: 10.16437/j.cnki.1007-5038.2012.09.012.
    [6]
    FOTHERGILL A W. Antifungal susceptibility testing: clinical laboratory and standards institute (CLSI) methods[M]//HALL G S. Interaction of yeasts, moulds, and antifungal agents. New York: Humana Press, 2012.
    [7]
    KLIMA C L, ZAHEER R, BRIGGS R E, et al. A multiplex PCR assay for molecular capsular serotyping of Mannheimia haemolytica serotypes 1, 2, and 6[J]. Journal of Microbiological Methods, 2017, 139: 156. DOI: 10.1016/j.mimet.2017.05.010.
    [8]
    MCALLISTER T A, HENDRICK S, ALEXANDER T W, et al. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease[J]. Canadian Journal of Veterinary Research, 2014, 78(1): 38. DOI: 10.1016/j.tvjl.2013.10.017.
    [9]
    冉艾, 张斌, 岳华, 等. 肉牛溶血性曼氏杆菌的分离鉴定及耐药性分析[J]. 中国预防兽医学报, 2018, 40(4): 301. DOI: 10.3969/j.issn.1008-0589.2017.05.045.
    [10]
    韩小丽, 任静静, 杨铭伟, 等. 致肉牛运输热溶血曼氏杆菌的分离鉴定及部分生物学特性研究[J]. 中国畜牧兽医, 2019, 46(2): 548. DOI: 10.16431/j.cnki.1671-7236.2019.02.026.
    [11]
    ANDRES-LASHERAS S, ZAHEER R, KLIMA C, et al. Serotyping and antimicrobial resistance of Mannheimia haemolytica strains from European cattle with bovine respiratory disease[J]. Research in Veterinary Science, 2019, 124: 10. DOI: 10.1016/j.rvsc.2018.12.021.
    [12]
    SHANTHALINGAM S, GOLDY A, BAVANANTHASIVAM J, et al. PCR assay detects Mannheimia haemolytica in culture-negative pneumonic lung tissues of bighorn sheep (Ovis canadensis) from outbreaks in the western USA, 2009-2010[J]. Journal of Wildlife Diseases, 2014, 50(1): 1. DOI: 10.7589/2012.09.225.
    [13]
    BATRA S A, SHANTHALINGAM S, MUNSKE G R, et al. Acylation enhances, but is not required for, the cytotoxic activity of Mannheimia haemolytica leukotoxin in bighorn sheep[J]. Infection and Immunity, 2015, 83(10): 3982. DOI: 10.1128/IAI.00733-15.
    [14]
    ZHENG T, GUPTA S K, MCCARTHY A R, et al. Cross-protection study of a Mannheimia haemolytica serotype 1 vaccine against acute pasteurellosis in lambs induced by a serotype 2 strain[J]. Veterinary Microbiology, 2015, 177(3/4): 386. DOI: 10.1016/j.vetmic.2015.02.019.
    [15]
    GORIS J, KONSTANTINIDIS K T, KLAPPENBACH J A, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(1): 81. DOI: 10.1099/ijs.0.64483-0.
    [16]
    陈艳红, 颜忠, 查振林, 等. 溶血性曼氏杆菌致病机制的研究进展[J]. 中国畜牧兽医, 2010, 37(12): 154.
    [17]
    张永久, 王萍萍, 武广文. 溶血性曼氏杆菌毒素的作用及其分子致病机理[J]. 黑龙江畜牧兽医, 2007(7): 38. DOI: 10.13881/j.cnki.hljxmsy.2007.07.021.
    [18]
    高佳滨. 多杀性巴氏杆菌OmpH与溶血性曼氏杆菌lktA蛋白的融合表达与免疫原性研究[D]. 大庆: 黑龙江八一农垦大学, 2014.
    [19]
    GANZ T, WEISS J. Antimicrobial peptides of phagocytes and epithelia[J]. Seminars in Hematology, 1997, 34(4): 343. DOI: 10.1016/j.talanta.2009.02.052.
    [20]
    COSTA T R D, FELISBERTO-RODRIGUES C, MEIR A, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights[J]. Nature Reviews Microbiology, 2015, 13(6): 343. DOI: 10.1038/nrmicro-3456.
    [21]
    薛原, 张秀英, 王贵霞, 等. 大肠杆菌主动外排系统的研究进展[J]. 中国预防兽医学报, 2009, 31(6): 493.
    [22]
    李昕, 曾洁, 王岱, 等. 细菌耐药耐受性机制的最新研究进展[J]. 中国抗生素杂志, 2020, 45(2): 113. DOI: 10.13461/j.cnki.cja.006866.
    [23]
    刘艳红. 沙门氏菌和大肠杆菌耐药性及耐药基因的研究[D]. 沈阳: 沈阳农业大学, 2016.
    [24]
    胡凡. 铜绿假单胞菌的耐药表型与耐药基因型研究[D]. 石家庄: 河北农业大学, 2015.
    [25]
    李颖, 杨帆. 细菌的耐药性与适应性[J]. 中国感染与化疗杂志, 2010, 10(1): 78. DOI: 10.16718/j.1009-7708.2010.01.004.
    [26]
    GYGLI S M, KELLER P M, BALLIF M, et al. Whole-genome sequencing for drug resistance profile prediction in Mycobacterium tuberculosis[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(4): 18. DOI: 10.1128/AAC.02175-18.

Catalog

    Article views (3246) PDF downloads (16) Cited by()