• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Yuhong GOU, Jingzheng HE, Chao LI, et al. Inhibition Mechanism of Mandelic Acid on the Activity of Sortase A of Staphylococcus aureus[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 622-628. DOI: 10.12101/j.issn.1004-390X(n).201909025
Citation: Yuhong GOU, Jingzheng HE, Chao LI, et al. Inhibition Mechanism of Mandelic Acid on the Activity of Sortase A of Staphylococcus aureus[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 622-628. DOI: 10.12101/j.issn.1004-390X(n).201909025

Inhibition Mechanism of Mandelic Acid on the Activity of Sortase A of Staphylococcus aureus

More Information
  • Received Date: September 19, 2019
  • Revised Date: April 12, 2020
  • Available Online: July 26, 2020
  • Published Date: July 24, 2020
  • Purpose To investigate the inhibitory effect of mandelic acid on the activity of Staphylococcus aureus sortase A (SrtA) and its molecular mechanism.
    Method The in vitro inhibition effect of mandelic acid on S. aureus was studied by double dilution method and plate coating method; the growth curve of S. aureus in medium containing different concentrations of mandelic acid was determined; the determination of almonds by crystal violet staining method effects of mandelic acid on the formation of S. aureus biofilm; fluorescence resonance energy transfer assay (FRET), molecular docking technique and molecular dynamics were used to study the molecular mechanism of mandelic acid inhibititing the activity of S. aureus SrtA.
    Result The MIC and MBC of mandelic acid against S. aureus were both greater than 1 024 μg/mL, and there was no effect on S. aureus and its growth within the test concentration range (0, 64, 128, 256, 512 and 1 024 μg/mL); the mass concentration of mandelic acid was different, and there was a slight difference in the total amount of S. aureus biofilm reduction and it was inhibited in a concentration-dependent manner; mandelic acid had a certain inhibitory effect on the SrtA activity, and its IC50 was (66.15±24.39) μg/mL; mandelic acid is tightly bound to Pro-163, Val-166, Gly-167, Val-168, Ile-199 and Leu-169 residues by various intermolecular forces, resulting in conformational change of SrtA thereby reducing activity.
    Conclusion Mandelic acid can bind tightly with the active center of SrtA and interact to form a stable complex, ultimately inhibiting the biological activity of SrtA, and has the potential to become an inhibitor against S. aureus infection.
  • [1]
    TACCONELLI E, TUMBARALLO M, CAUDA R. Staphylococcus aureus infections[J]. The New England Journal of Medicine, 1998, 339(27): 2026. DOI: 10.1056/NEJM199808203390806.
    [2]
    李丽民, 吴先华, 徐礼锋. 金黄色葡萄球菌的临床分布及耐药性分析[J]. 中华医院感染学杂志, 2014, 24(4): 787. DOI: 10.11816/cn.ni.2014-131226.
    [3]
    WANG H, GILL C J, LEE S, et al. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents[J]. Chemistry & Biology, 2013, 20(2): 272. DOI: 10.1016/j.chembiol.2012.11.013.
    [4]
    OSAKI M, TAKAMATSU D, SHIMOJI Y, et al. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria[J]. Journal of Bacteriology, 2002, 184(4): 286. DOI: 10.1128/jb.184.4.971-982.2002.
    [5]
    CASCIOFERRO S, TOTSIKA M, SCHILLACI D. Sortase A: an ideal target for anti-virulence drug development[J]. Microbial Pathogenesis, 2014, 77: 105. DOI: 10.1016/j.micpath.2014.10.007.
    [6]
    迟戈夫. 异鼠李素抗金黄色葡萄球菌α溶血素和分选酶A作用研究[D]. 长春: 吉林大学, 2016.
    [7]
    KIM S W, CHANG I M, OH K B. Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 66(12): 2751. DOI: 10.1271/bbb.66.2751.
    [8]
    张冰. 查尔酮抗金黄色葡萄球菌分选酶A和α-溶血素的作用研究[D]. 长春: 吉林大学, 2018.
    [9]
    毕重伟. 刺槐素对金黄色葡萄球菌SrtA的抑制作用与机制研究[D]. 长春: 吉林大学, 2016.
    [10]
    任淑娟, 解娟, 魏绪仓, 等. 扁桃酸的镇痛抗炎作用研究[J]. 中国药师, 2017, 20(12): 2153. DOI: 10.3969/j.issn.1008-049X.2017.12.015.
    [11]
    卢敏. 苦杏仁酸制备工艺研究[J]. 化工设计通讯, 2016, 42(7): 86. DOI: 10.3969/j.issn.1003-6490.2016.07.071.
    [12]
    张敏如, 高雪珍. 扁桃酸栓治疗滴虫病的基础与临床研究[J]. 实用妇科与产科杂志, 1990, 6(5): 253.
    [13]
    王民, 郭仁舆. 扁桃酸的体外杀精子研究[J]. 西安医科大学学报, 1988, 9(4): 313.
    [14]
    夏敏杰, 王玉柱, 黄超, 等. dl-扁桃酸对人精子与阴道黏膜上皮VK2/E6E7细胞的毒性研究[J]. 中国现代应用药学, 2015, 32(4): 391. DOI: 10.13748/j.cnki.issn.1007-7693.2015.04.001.
    [15]
    陈福广. 分选酶A在金黄色葡萄球菌引起的乳腺炎、菌血症和肺炎致病过程中的作用[D]. 长春: 吉林大学, 2014.
    [16]
    鲁茹, 陆桂玉, 林浙哲, 等. 增强耐甲氧西林金黄色葡萄球菌抗生素敏感性的中药筛选[J]. 世界科学技术-中医药现代化, 2018, 20(12): 2217. DOI: 10.11842/wst.2018.12.020.
    [17]
    李汉浠, 任赛赛, 李勇, 等. 枫杨萘醌对常见菌的抗菌谱、最低抑菌浓度和最低杀菌浓度研究[J]. 时珍国医国药, 2012, 23(6): 1422. DOI: 10.3969/j.issn.1008-0805.2012.06.047.
    [18]
    朱艳蕾. 细菌生长曲线测定实验方法的研究[J]. 微生物学杂志, 2016, 36(5): 108. DOI: 10.3969/j.issn.1005-7021.2016.05.019.
    [19]
    张汝钢, 张修礼, 杨云生. 金葡菌的生长速度和凝固酶活性对巴马小型猪化脓性肝脓肿形成的影响[J]. 胃肠病学和肝病学杂志, 2018, 27(2): 173. DOI: 10.3969/j.issn.1006-5709.2018.02.013.
    [20]
    MAZMANIAN S K, HUNG T T, SU K, et al. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2293. DOI: 10.1073/pnas.032523999.
    [21]
    HUNG T T, LIU G, MAZMANIAN S K, et al. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif[J]. Proceedings of the National Academy of Sciences, 1999, 96(22): 12424. DOI: 10.1073/pnas.96.22.12424.
    [22]
    SANNER M F. Python: a programming language for software integration and development[J]. Journal of Molecular Graphics and Modelling, 1999, 17(1): 57. DOI: 10.1016/S1093-3263(99)00019-4.
    [23]
    MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785. DOI: 10.1002/jcc.21256.
    [24]
    TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry, 2010, 31(2): 455. DOI: 10.1002/jcc.21334.
    [25]
    PIERCE L C T, SALOMON-FERRER R, DE OLIVEIRA C A F, et al. Routine access to millisecond time scale events with accelerated molecular dynamics[J]. Journal of Chemical Theory and Computation, 2012, 8(9): 2997. DOI: 10.1021/ct300284c.
    [26]
    GÖTZ A W, WILLIAMSON M J, XU D, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born[J]. Journal of Chemical Theory and Computation, 2012, 8(5): 1542. DOI: 10.1021/ct200909j.
    [27]
    SALOMON-FERRER R, GÖTZ A W, POOLE D, et al. Routine microsecond molecular dynamics simulations with Amber on GPUs. 2. Explicit solvent particle mesh Ewald[J]. Journal of Chemical Theory and Computation, 2013, 9(9): 3878. DOI: 10.1021/ct400314y.
    [28]
    SOUSA DA SILVA A W, VRANKEN W F. ACPYPE-Antechamber python parser interface[J]. BMC Research Notes, 2012, 5(1): 367. DOI: 10.1186/1756-0500-5-367.
    [29]
    WANG J M, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9): 1157. DOI: 10.1002/jcc.20035.
    [30]
    WANG J M, WANG W, KOLLMAN P A, et al. Automatic atom type and bond type perception in molecular mechanical calculations[J]. Journal of Molecular Graphics and Modelling, 2006, 25(2): 247. DOI: 10.1016/j.jmgm.
    [31]
    ZHANG B, TENG Z H, LI X H, et al. Chalcone attenuates Staphylococcus aureus virulence by targeting SrtA and alpha-hemolysin[J]. Frontiers in Microbiology, 2017, 8(2): 210. DOI: 10.3389/fmicb.2017.01715.
    [32]
    郑琳, 洪志明, 李瑜珍, 等. 复方中药对溶血葡萄球菌生物膜的抑制作用[J]. 中医药导报, 2018, 24(20): 52. DOI: 10.13862/j.cnki.cn43-1446/r.2018.20.015.
    [33]
    李玲, 卢芳国, 陈伶利, 等. 小檗碱体外抗耐甲氧西林金黄色葡萄球菌活性的研究[J]. 湖南中医药大学学报, 2018, 38(3): 254. DOI: 10.3969/j.issn.1674-070X.
    [34]
    袁中伟, 陈志英, 甘盈盈, 等. 百里香酚对耐甲氧西林金黄色葡萄球菌的抑菌作用机制[J]. 华南农业大学学报, 2018, 39(6): 18. DOI: 10.7671/j.issn.1001-411X.2018.06.004.

Catalog

    Article views (1886) PDF downloads (22) Cited by()