• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Yingying ZHENG, Shuyuan LIU, Hong LIU, et al. Seasonal Stratified Characteristics of Water Bodies in a Sub-deep Reservoir[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(2): 359-370. DOI: 10.12101/j.issn.1004-390X(n).201907059
Citation: Yingying ZHENG, Shuyuan LIU, Hong LIU, et al. Seasonal Stratified Characteristics of Water Bodies in a Sub-deep Reservoir[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(2): 359-370. DOI: 10.12101/j.issn.1004-390X(n).201907059

Seasonal Stratified Characteristics of Water Bodies in a Sub-deep Reservoir

More Information
  • Received Date: July 27, 2019
  • Revised Date: July 02, 2020
  • Available Online: January 11, 2021
  • Published Date: March 30, 2021
  • PurposeIn order to explore the thermal stratification structure, water quality response characteristics and their formation mechanism of a subtropical sub-deep reservoir.
    MethodWe conducted on-site measurements and laboratory tests on the vertical changes of water temperature, dissolved oxygen (DO), pH, and chlorophyll a in the Changtan Reservoir (in Taizhou City) in 2018. Then the seasonal physical structure characteristics of thermal stratification were analyzed, and its impact on water quality was discussed.
    ResultChangtan Reservoir has a three-layer stratification period from May to June, and a two-layer stratification period from July to November. The relative water column stability (RWCS) was the highest (521) in August, the thermocline was the largest in August, accounting for 85.19% of the water depth, and the intensity was the largest (0.70 ℃/m) in June. The vertical distribution of DO showed a 3-peak characteristic from July to September, and a 2-peak characteristic from October to November. The surface water was weakly alkaline from May to September, and was neutral in other months, the bottom water was weakly acidic from July to November, and was neutral in other months. The vertical distribution of chlorophyll a in December, January and February, and June was more discrete, and other months showed a single peak characteristic.
    ConclusionThe thermal stratified structure of Changtan Reservoir presents a single-cycle mixed pattern throughout the year, and presents structural characteristics different from those of deep-water reservoirs during the stratified stable period. The special layered structure of the sub-deep reservoir has a certain special effect on the vertical changes of DO, pH and chlorophyll a.
  • [1]
    赵林林, 朱广伟, 陈元芳, 等. 太湖水体水温垂向分层特征及其影响因素[J]. 水科学进展, 2011, 22(6): 844. DOI: 32.1309.P.20111125.1636.010.
    [2]
    吴莉莉, 王惠民, 吴时强. 水库的水温分层及其改善措施[J]. 水电站设计, 2007, 23(3): 97. DOI: 10.3969/j.issn.1003-9805.2007.03.026.
    [3]
    王煜, 戴会超. 大型水库水温分层影响及防治措施[J]. 三峡大学学报(自然科学版), 2009, 31(6): 11. DOI: 10.3969/j.issn.1672-948X.2009.06.003.
    [4]
    SAITO L, JOHNSON B M, BARTHOLOW J, et al. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models[J]. Ecosystems, 2001(4): 105. DOI: 10.2307/3659011.
    [5]
    ÇALIŞKAN A, ELÇI Ş. Effects of selective withdrawal on hydrodynamics of a stratified reservoir[J]. Water Resources Management, 2009, 23(7): 1257. DOI: 10.1007/s11269-008-9325-x.
    [6]
    韩博平. 中国水库生态学研究的回顾与展望[J]. 湖泊科学, 2010, 22(2): 151. DOI: 10.18307/2010.0201.
    [7]
    XIAO L J, WANG T, HU R, et al. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir[J]. Water Research, 2011, 45(16): 5099. DOI: 10.1016/j.watres.2011.07.012.
    [8]
    ZHU K X, BI Y H, HU Z Y. Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China[J]. Science of the Total Environment, 2013, 450/451: 169. DOI: 10.1016/j.scitotenv.2013.01.101.
    [9]
    ZHANG Y L, WU Z X, LIU M L, et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China)[J]. Water Research, 2015, 75(2): 49. DOI: 10.1016/j.watres.2015.02.052.
    [10]
    JONES J R, KNOWLTON M F, OBRECHT D V, et al. Temperature and oxygen in Missouri reservoirs[J]. Lake and Reservoir Management, 2011, 27(2): 173. DOI: 10.1080/07438141.2011.583713.
    [11]
    卢金锁, 李志龙. 热分层对水库水质的季节性影响——以西安黑河水库为例[J]. 湖泊科学, 2014, 26(5): 698. DOI: 10.3969/j.issn.1003-5427.2014.05.007.
    [12]
    谭欣林. 峡谷分层型水源水库季节性水质响应特征及水质模拟研究[D]. 西安: 西安建筑科技大学, 2018.
    [13]
    刘树元, 郑晨, 袁琪, 等. 台州长潭水库铁锰质量浓度变化特征及其成因分析[J]. 环境科学, 2014, 35(10): 3702. DOI: 10.13227/j.hjkx.2014.10.009.
    [14]
    吴丰昌, 金相灿, 张润宇, 等. 论有机氮磷在湖泊水环境中的作用和重要性[J]. 湖泊科学, 2010, 22(1): 1. DOI: 10.18307/2010.0101.
    [15]
    张少雄. 大型水库分层取水下泄水温研究[D]. 天津: 天津大学, 2012.
    [16]
    白杨, 张运林, 周永强, 等. 千岛湖水温垂直分层的空间分布及其影响因素[J]. 海洋与湖沼, 2016, 47(5): 906. DOI: 10.11693/hyhz20160400095.
    [17]
    何剑波. 千岛湖水温、溶解氧及叶绿素a垂向特征研究[D]. 杭州: 浙江工业大学, 2014.
    [18]
    吕迎春, 刘丛强, 王仕禄, 等. 红枫湖夏季分层期间pCO2分布规律的研究[J]. 水科学进展, 2008, 19(1): 106. DOI: 10.3321/j.issn:1001-6791.2008.01.018.
    [19]
    曾康, 黄廷林, 马卫星, 等. 金盆水库汛期高浊水径流的潜入及热分层水体水质响应[J]. 中国环境科学, 2015, 35(9): 2778. DOI: 10.3969/j.issn.1000-6923.2015.09.033.
    [20]
    贺冉冉, 罗潋葱, 朱广伟, 等. 天目湖溶解氧变化特征及对内源氮释放的影响[J]. 生态与农村环境学报, 2010, 26(4): 344. DOI: 10.3969/j.issn.1673-4831.2010.04.011.
    [21]
    国家环境保护总局, 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002.
    [22]
    MUNGER Z W, CAREY C C, GERLING A B, et al. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir[J]. Water Research, 2016, 106: 1. DOI: 10.1016/j.watres.2016.09.038.
    [23]
    姜波, 吴新荣, 丁杰, 等. 南海温跃层深度计算方法的比较[J]. 海洋通报, 2016, 35(1): 64. DOI: 10.11840/j.issn.1001-6392.2016.01.009.
    [24]
    孙祥, 朱广伟, 笪文怡, 等. 天目湖沙河水库热分层变化及其对水质的影响[J]. 环境科学, 2018, 39(6): 2632. DOI: 10.13227/j.hjkx.201710223.
    [25]
    FEE E J, HECKY R E, KASIAN S E M, et al. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes[J]. Limnology and Oceanography, 1996, 41(5): 912. DOI: 10.4319/lo.1996.41.5.0912.
    [26]
    殷燕, 吴志旭, 刘明亮, 等. 千岛湖溶解氧的动态分布特征及其影响因素分析[J]. 环境科学, 2014, 35(7): 2539. DOI: 10.13227/j.hjkx.2014.07.015.
    [27]
    苏玉萍, 郑达贤, 林婉珍, 等. 福建省山仔水库水体季节性分层特征研究[J]. 福建师范大学学报(自然科学版), 2007, 23(3): 1. DOI: 10.3969/j.issn.1000-5277.2007.03.001.
    [28]
    BEHRENFELD M J, FALKOWSKI P G. Photosynthetic rates derived from satellite-based chlorophyll concentration[J]. Limnology and Oceanography, 1997, 42(1): 1. DOI: 10.4319/lo.1997.42.1.0001.
    [29]
    姜欣, 朱林, 许士国, 等. 水源水库季节性分层及悬浮物行为对铁锰迁移的影响−以辽宁省碧流河水库为例[J]. 湖泊科学, 2019, 31(2): 375. DOI: 10.18307/2019.0207.
    [30]
    刘其根, 陈立侨, 陈勇. 千岛湖水华发生与主要环境因子的相关性分析[J]. 海洋湖沼通报, 2007(1): 117. DOI: 10.3969/j.issn.1003-6482.2007.01.017.
  • Cited by

    Periodical cited type(5)

    1. 陈侃,王飞飞,阮琪祯,吴旭春,曹文志. 深型水库溶解氧分层规律及其机制探究——以万安水库为例. 水生态学杂志. 2024(02): 20-30 .
    2. 王璨,李一平,李聂贵,郭晋川,朱雅,吴卫熊,魏尧,陈宇. 南方水库热分层消亡时期水体混合特征及其驱动机制. 湖泊科学. 2023(05): 1613-1622 .
    3. 田盼,李亚莉,李莹杰,李虹,王丽婧,宋林旭,纪道斌,赵星星. 三峡水库调度对支流水体叶绿素a和环境因子垂向分布的影响. 环境科学. 2022(01): 295-305 .
    4. 王帅,刘梅冰. 不同时间尺度下大型水库水温分层结构的变化特征. 亚热带资源与环境学报. 2022(01): 72-78 .
    5. 殷霞. 费用效益分析法对水环境保护工程的经济评价分析. 皮革制作与环保科技. 2021(07): 20-21+27 .

    Other cited types(4)

Catalog

    Article views (3705) PDF downloads (23) Cited by(9)