• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Xinlei LI, Yefang LI, Fengrong LI, et al. The Seed Germination and Seedling Physiological Characteristics of Prinsepia utilis under Drought Stress[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 682-687. DOI: 10.12101/j.issn.1004-390X(n).201905047
Citation: Xinlei LI, Yefang LI, Fengrong LI, et al. The Seed Germination and Seedling Physiological Characteristics of Prinsepia utilis under Drought Stress[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2020, 35(4): 682-687. DOI: 10.12101/j.issn.1004-390X(n).201905047

The Seed Germination and Seedling Physiological Characteristics of Prinsepia utilis under Drought Stress

More Information
  • Received Date: May 18, 2019
  • Revised Date: June 10, 2020
  • Available Online: August 02, 2020
  • Published Date: July 24, 2020
  • PurposeTo understand the drought tolerance of Prinsepia utilis.
    MethodsDifferent volume fractions (0, 5%, 10%, 15%, 20% and 25%) of polyethylene glycol (PEG-6000) were used to simulate the effects of drought stress on the seed germination, and different volume fractions (0, 10%, 20%, and 30%) of PEG-6000 were used to simulate the effect of drought stress on the physiological characteristics of the seedling growth.
    Results(1) Under the stress of 5% and 10% PEG, the germination start time of P. utilis seeds was delayed and the duration was longer. The germination rate, germination potential and germination index were gradually decreased, and the difference was significant with the control (P<0.05); under 15% PEG stress, the germination rate, germination potential and germination index of P. utilis increased compared with 10% PEG stress; when the PEG stress reached 20% or above, seeds could not germinate. (2) The content of proline and malondialdehyde in the leaves of P. utilis increased as PEG concentration and prolonged stress time increased. The increase of proline in the 6th day of stress was higher than that of malondialdehyde. On the 9th day, the proline increase was smaller than the malondialdehyde increase. (3) With the prolongation of PEG stress time, the activities of catalase and superoxide dismutase in the seedlings of P. utilis increased firstly and then decreased and the highest activity was found in all treatments on the 6th day. While the activities of peroxidase firstly decreased and then increased, and the lowest activity was found on the 6th day.
    ConclusionThe seeds of P. utilis could germinate normally under mild drought stress, and the seedlings could actively adapt to the drought stress by regulating the content of osmotic adjustment substances and antioxidant enzymes in the body, which showed good adaptability to the arid environment.
  • [1]
    刘友良. 植物水分逆境生理[M]. 北京: 农业出版社, 1992.
    [2]
    褚建民. 干旱区植物的水分选择性利用研究[D]. 北京: 中国林业科学研究院, 2007.
    [3]
    熊贤荣, 欧静, 龙海燕, 等. 干旱胁迫对桃叶杜鹃菌根苗生长的影响[J]. 西南林业大学学报(自然科学), 2018, 38(1): 34. DOI: 10.11929/j.issn.2095-1914.2018.01.006.
    [4]
    李瑞雪, 孙任洁, 汪泰初, 等. 植物抗旱性鉴定评价方法及抗旱机制研究进展[J]. 生物技术通报, 2017, 33(7): 40. DOI: 10.13560/j.cnki.biotech.bull.1985.2017-0023.
    [5]
    张旺军, 杨晓盆. 扁核木的开发价值与栽培技术[J]. 山西农业科学, 2008, 36(2): 82. DOI: 10.3969/j.issn.1002-2481.2008.02.030.
    [6]
    刘招娣, 刘祥义, 张水滔, 等. 青刺果总黄酮超声波辅助提取及其抗氧化活性[J]. 食品研究与开发, 2018, 39(1): 20. DOI: 10.3969/j.issn.1005-6521.2018.01.005.
    [7]
    尤艺璇, 涂颖, 刘海洋, 等. 青刺果油对特应性皮炎样小鼠模型表皮通透屏障及抗菌肽表达的影响[J]. 中国皮肤性病学杂志, 2018, 32(6): 26. DOI: 10.13735/j.cjdv.1001-7089.201709101.
    [8]
    高凡丁, 黄士淇, 张成庭, 等. 发酵青刺果种子的酚类物质组成及抗氧化活性分析[J]. 云南民族大学学报(自然科学版), 2018, 27(3): 167. DOI: 10.3969/j.issn.1672-8513.2018.03.001.
    [9]
    范志远, 习学良, 欧阳和, 等. 青刺果的植物学特性及其人工栽培技术[J]. 西部林业科学, 2005, 34(4): 47. DOI: 10.3969/j.issn.1672-8246.2005.04.010.
    [10]
    董丽萍. 大理州野生青刺果经济价值及栽培技术初探[J]. 林业调查规划, 2004, 29(S1): 287. DOI: 10.3969/j.issn.1671-3168.2004.z1.102.
    [11]
    BU Y Y, GUO P, JI Y L, et al. Effects of Epichloë sinica on Roegneria kamoji seedling physiology under PEG-6000 simulated drought stress[J]. Symbiosis, 2019, 77: 123. DOI: 10.1007/s13199-018-0570-3.
    [12]
    MATILLA-VÁZQUEZ M A, MATILLA A J. Ethylene: role in plants under environmental stress[M]//AHMAD P, WANI M R. Physiological mechanisms and adaptation strategies in plants under changing environment: volume 2. New York: Springer, 2014.
    [13]
    王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015.
    [14]
    古旭, 张锦堂, 陈琛, 等. 榕属4种植物种子萌发对PEG模拟干旱胁迫的响应[J]. 西南林业大学学报(自然科学), 2017, 37(4): 15. DOI: 10.11929/j.issn.2095-1914.2017.04.003.
    [15]
    闫兴富, 周立彪, 思彬彬, 等. 不同温度下PEG-6000模拟干旱对柠条锦鸡儿种子萌发的胁迫效应[J]. 生态学报, 2016, 36(7): 196. DOI: 10.5846/stxb201409021746.
    [16]
    刘佳月, 杜建材, 王照兰, 等. 紫花苜蓿和黄花苜蓿种子萌发期对PEG模拟干旱胁迫的响应[J]. 中国草地学报, 2018, 40(3): 27. DOI: 10.16742/j.zgcdxb.2018-03-05.
    [17]
    韩娜. 干旱胁迫对华北落叶松种子萌发与幼苗生长的影响[D]. 晋中: 山西农业大学, 2015.
    [18]
    王继玥, 石登红, 白禹, 等. PEG-6000模拟干旱胁迫对黄秋葵种子萌发和幼苗生理特性的影响[J]. 热带亚热带植物学报, 2018, 26(6): 611. DOI: 10.11926/jtsb.3907.
    [19]
    章应峰, 费世民, 王鹏, 等. 干旱地区树木耐旱性研究现状评述[J]. 四川林业科技, 2001(4): 24. DOI: 10.16779/j.cnki.1003-5508.2001.04.003.
    [20]
    姚春玲. 宿根花卉抗旱性研究进展[J]. 科技创新与应用, 2017(25): 171. DOI: 10.11942/j.issn1002-2767.2016.08.0145.
    [21]
    MARTINEZ J P, LUTTS S, SCHANCK A, et al. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.[J]. Journal of Plant Physiology, 2004, 161(9): 1041. DOI: 10.1016/j.jplph.2003.12.009.
    [22]
    王邦锡, 孙莉. 渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系[J]. 中国科学(B辑: 化学, 生命科学, 地学), 1992(4): 364. DOI: 10.3321/j.issn:1006-9240.1992.04.001.
    [23]
    CORPAS F J, BARROSO J B, del RÍO L A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells[J]. Trends in Plant Science, 2001, 6(4): 145. DOI: 10.1016/s1360-1385(01)01898-2.
    [24]
    BARTOLI C G, GÓMEZ F, MARTÍNEZ D E, et al. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.)[J]. Journal of Experimental Botany, 2004, 55(403): 1663. DOI: 10.1093/jxb/erh199.
    [25]
    谢小玉, 马仲炼, 白鹏, 等. 辣椒开花结果期对干旱胁迫的形态与生理响应[J]. 生态学报, 2014, 34(13): 3797. DOI: 10.5846/stxb201211211645.
    [26]
    杨柳, 何正军, 赵文吉, 等. 狭叶红景天幼苗对水分及遮阴的生长及生理生化响应[J]. 生态学报, 2017, 37(14): 4706. DOI: 10.5846/stxb201604070639.
    [27]
    张宝石, 徐世昌, 宋凤斌, 等. 玉米抗旱基因型鉴定方法和指标的探讨[J]. 玉米科学, 1996, 4(3): 19. DOI: 10.13597/j.cnki.maize.science.1996.03.005.
    [28]
    李晶, 阎秀峰, 祖元刚. 低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J]. 植物学报, 2000, 42(2): 148.
    [29]
    王群, 尹飞, 李潮海. 水分胁迫下植物体内活性氧自由基代谢研究进展[J]. 河南农业科学, 2004(10): 25. DOI: 10.15933/j.cnki.1004-3268.2004.10.010.
    [30]
    谢晓红. 植物抗氧化酶系统研究进展[J]. 化工管理, 2015(32): 99. DOI: 10.3969/j.issn.1008-4800.2015.32.083.
    [31]
    IMPA S M, NADARADJAN S, JAGADISH S V K. Drought stress induced reactive oxygen species and anti-oxidants in plants[M]//AHMAD P, PRASAD M N V. Abiotic stress responses in plants. New York: Springer, 2012.
    [32]
    吴其林. 土壤干旱对大豆种子萌发、幼苗生长的影响及复水后的补偿生长研究[D]. 成都: 四川农业大学, 2008.
    [33]
    安玉艳, 梁宗锁, 郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J]. 生态学报, 2010, 31(3): 716.
    [34]
    李志萍, 张文辉, 崔豫川. PEG模拟干旱胁迫对栓皮栎种子萌发及生长生理的影响[J]. 西北植物学报, 2013, 33(10): 2043. DOI: 10.7606/j.issn.1000-4025.2013.10.2043.
    [35]
    李畅, 苏家乐, 刘晓青, 等. 干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响[J]. 西北植物学报, 2015, 35(7): 145.
    [36]
    徐振朋, 宛涛, 蔡萍, 等. PEG模拟干旱胁迫对罗布麻种子萌发及生理特性的影响[J]. 中国草地学报, 2015, 37(5): 75. DOI: 10.3969/j.issn.1673-5021.2015.05.013.
  • Related Articles

    [1]CHEN Mo, CHEN Lu, HUANG Xiaoya, XIE Haihong, LI Shuangjiang, ZUO Zilin, SHENG Hao, SONG Yong. Growth and Physiological Response of Seedling Cassava under Drought Stress Simulated by PEG[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 15-22. DOI: 10.12101/j.issn.1004-390X(n).202403043
    [2]BAO Jialin, LI Youhan, LI Kaifeng, GUO Huachun. Photosynthetic Physiological Response of Potato/Tomato Grafting under Seedling Stage Drought Stress[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2024, 39(4): 9-14. DOI: 10.12101/j.issn.1004-390X(n).202204004
    [3]Jiao LIU, Yonglei JIANG, Jingyu LIN, Xiaoxia HUANG. Effects of Exogenous Silicon on Growth and Physiological Characteristics of Tobacco under Drought Stress[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2023, 38(2): 306-313. DOI: 10.12101/j.issn.1004-390X(n).202209009
    [4]Dandan SHI, Jianjun WANG, Huimin DUO, Jiayue WANG, Donghua LEI, Zhiyu KANG. Effects of PEG Stress on Seed Germination and Seedling Physiological and Biochemical Characteristics of Two New Highland Barley Lines[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2022, 37(3): 397-405. DOI: 10.12101/j.issn.1004-390X(n).202109029
    [5]Mengyu DONG, Liren XU, Yanhui LI. Effects of Salt Stress on the Seed Germination and Seedling Growth of Erysimum amurense[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2021, 36(5): 745-752. DOI: 10.12101/j.issn.1004-390X(n).202008046
    [6]Wenjun MEI, Yilan XU, Yonglian YANG, Xinhui DUAN, Hua JIANG, Yang TAO, Bo HAN. Effects of Acid Aluminum Stress on the Seed Germination and Seeding Growth of Medicago hispida cv. Chuxiong[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(6): 1012-1017. DOI: 10.12101/j.issn.1004-390X(n).201811061
    [7]Jing SU, Xiaojing SHI, Bin LIANG, Weilong TAN, Qiao ZHANG, Shijun WANG. The Effect of Drought Stress on the Seed Germination and Physiological Characteristics of Quinoa[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(6): 928-932. DOI: 10.12101/j.issn.1004-390X(n).201803014
    [8]Yuwen ZHANG, Xingran LIAN, Yan ZHAO. Effect of Simulated Drought Stress on the Physiological Characteristics of Cerasus cerasoides Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(1): 97-102. DOI: 10.12101/j.issn.1004-390X(n).201711075
    [9]Wentong ZOU, Zhi CAO. Effects of Combined Copper and Zinc Stress on the Seed Germination, Seedling Growth and Cotyledon Physiological Metabolism of Chinese Flowering Cabbage[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2018, 33(4): 632-639. DOI: 10.12101/j.issn.1004-390X(n).201704027
    [10]YIN Zhiyu, XIAO Guanli. Effects of Drought Stress on Physiological Index and Photosynthetic Traits at Seedling Stage of Winter Potato[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2017, 32(6): 992-998. DOI: 10.16211/j.issn.1004-390X(n).2017.06.005
  • Cited by

    Periodical cited type(9)

    1. 邹宜芯,李慧,任玉欣,赵凯文. 硫代葡萄糖苷浸种对青花菜种子萌发及生理特性的影响. 江苏农业学报. 2024(08): 1379-1388 .
    2. 熊露茜,冯国军,刘大军,刘畅,闫志山,杨晓旭. 外源CaCl_2和Vc对干旱胁迫下菜豆种子萌发及生理活性的影响. 黑龙江大学工程学报. 2023(01): 106-112 .
    3. 翟宇宁,张广华,董寅壮,何敏敏,王宇光,耿贵. PEG-6000模拟干旱胁迫对甜菜幼苗生长及生理指标的影响. 黑龙江大学自然科学学报. 2023(05): 573-580 .
    4. 杨梦思,虎海防,赵小利. 秋季不同处理方式下对美国黑核桃萌发的影响. 林业科技通讯. 2022(02): 42-45 .
    5. 王飞,赵文植,董章宏,马路遥,李卫英,夏茂甜,王正德,辛培尧. 扁核木属植物叶绿体基因组特征分析. 热带作物学报. 2022(09): 1759-1770 .
    6. 张加利,张雨欣,王宁,王思雨,曹晗,牟洪香. PEG预处理对文冠果种子萌发和幼苗生长的影响. 林业与生态科学. 2022(04): 384-389 .
    7. 高昆,曹艳东. 干旱胁迫对白花前胡种子萌发和幼苗生理生化特性的影响. 贵州农业科学. 2022(12): 130-138 .
    8. 王松,武敏,康红梅,王晋,薄伟. 干旱胁迫对2种地被植物生理指标的影响. 山西农业科学. 2020(09): 1424-1430 .
    9. 谭景晨,赵丽丽,张淑炜,席溢,陈超. 干旱胁迫对葛藤种苗生理特性的影响. 农业与技术. 2020(22): 17-20 .

    Other cited types(4)

Catalog

    Article views (1753) PDF downloads (10) Cited by(13)