• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Zefeng SONG, Xiaoqian SHI, Qian ZHANG, et al. Spatial Distribution Change of Topsoil Pb between 2004 and 2013 in Shijiazhuang City, China[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(6): 1061-1069. DOI: 10.12101/j.issn.1004-390X(n).201808051
Citation: Zefeng SONG, Xiaoqian SHI, Qian ZHANG, et al. Spatial Distribution Change of Topsoil Pb between 2004 and 2013 in Shijiazhuang City, China[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(6): 1061-1069. DOI: 10.12101/j.issn.1004-390X(n).201808051

Spatial Distribution Change of Topsoil Pb between 2004 and 2013 in Shijiazhuang City, China

More Information
  • Received Date: August 19, 2018
  • Revised Date: September 28, 2019
  • Available Online: November 28, 2019
  • Published Date: October 31, 2019
  • PurposeTo understand the spatial distribution change of topsoil Pb in Shijiazhuang urban and suburb between 2004 and 2013.
    MethodSoil samples were systematic collected at high density from the surface layer (0-20 cm) in Shijiazhuang urban and surrounding counties. The basic parameter data of Pb were compared between 2004 and 2013. Using spatial analysis module of ArcGIS 9.3, the spatial distribution of annual Pb-content were compared, and the Pb pollution status was evaluated by the ground accumulation index method during 2004—2013.
    Results(1) The Pb average content changed slightly from 2004 to 2013. The average Pb-content of 2004 and 2013 was 23.04 and 24.31 mg/kg, respectively. However, the maximum value and coefficient of variation changed greatly, the maximum value increased from 59.50 mg/kg to 82.50 mg/kg, and the coefficient of variation increased from 20.23 % to 23.45 %. (2) From 2004 to 2013, the low Pb-content soil area decreased, meanwhile the high-content area increased. The areas of very low value and low value decreased from 545.10 km2 to 388.08 km2, and the areas of high value and very high value increased from 545.10 km2 to 594.00 km2. (3) In study area, Pb pollution was relatively light, but the pollution situation was gradually developing. In 2004, the pollution zone was mainly in urban area, and pollution level was slight. In 2013, a small amount of moderate pollution appeared in Zhengding New District, and the light pollution expanded in suburban counties.
    ConclusionThe distribution of Pb was closely related to the main economic construction activities in the area. The changes of Pb-content distribution reflect the economic and social changes in Shijiazhuang City during 2004-2013.
  • [1]
    CHEN T, LIU X M, LI X, et al. Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China[J]. Environmental Pollution, 2009, 157(3): 1003. DOI: 10.1016/j.envpol.2008.10.011.
    [2]
    ZHONG B Q, LIANG T, WANG L Q, et al. Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a metalliferous industrial district of China[J]. Science of the Total Environment, 2014, 490: 422. DOI: 10.1016/j.scitotenv.2014.04.127.
    [3]
    LU A X, WANG J H, QIN X Y, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China[J]. Science of the Total Environment, 2012, 425: 66. DOI: 10.1016/j.scitotenv.2012.03.003.
    [4]
    XIAO Q, ZONG Y T, LU S G. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China[J]. Ecotoxicology and Environmental Safety, 2015, 120: 377. DOI: 10.1016/j.ecoenv.2015.06.019.
    [5]
    LIANG J, FENG C T, ZENG G M, et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution, 2017, 225: 681. DOI: 10.1016/j.envpol.2017.03.057.
    [6]
    郑睛之, 王楚栋, 王诗涵, 等. 典型小城市土壤重金属空间异质性及其风险评价—以临安市为例[J]. 环境科学, 2018, 39(6): 2875. DOI: 10.13227/j.hjkx.201711028.
    [7]
    徐光辉, 王洋, 于锐, 等. 四平市城郊蔬菜地土壤重金属来源及环境风险评价[J]. 土壤与作物, 2017, 6(4): 277. DOI: 10.11689/j.issn.2095-2961.2017.04.006.
    [8]
    张慧, 郑志志, 马鑫鹏, 等. 哈尔滨市土壤表层重金属污染特征及来源辨析[J]. 环境科学研究, 2017, 30(10): 1597. DOI: 10.13198/j.issn.1001-6929.2017.02.81.
    [9]
    李小平, 刘献宇, 刘洁, 等. 典型河谷城市儿童土壤与灰尘铅暴露风险[J]. 生态毒理学报, 2015, 10(2): 418. DOI: 10.7524/AJE.1673-5897.20141011002.
    [10]
    IPCS. Environmental Health Criteria 85: Inorganic Lead Geneva[M]. [S.l.]. WHO, 1993.
    [11]
    张志栋, 付亚星, 郭中领, 等. 石家庄市城区土壤剖面重金属含量分布特征[J]. 湖北农业科学, 2017, 56(17): 3234. DOI: 10.14088/j.cnki.issn0439-8114.2017.17.011.
    [12]
    姚娜, 彭昆国, 刘足根, 等. 石家庄北郊土壤重金属分布特征及风险评价[J]. 农业环境科学学报, 2014, 33(2): 313. DOI: 10.11654/jaes.2014.02.016.
    [13]
    崔邢涛, 栾文楼, 郭海全, 等. 石家庄城市土壤重金属污染及潜在生态危害评价[J]. 现代地质, 2011, 25(1): 169. DOI: 10.3969/j.issn.1000-8527.2011.01.023.
    [14]
    付亚星. 石家庄市土壤重金属空间分布特征及污染评价研究[D]. 石家庄: 河北师范大学, 2014.
    [15]
    河北省土壤普查成果汇总编委会, 河北省土壤普查办公室. 河北省土壤图集[M]. 北京: 农业出版社, 1991.
    [16]
    DD 2005—03. 生态地球化学评价样品分析技术要求(试行)[S].
    [17]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [18]
    王美青. 杭州市城市和近郊土壤特性及重金属污染的研究[D]. 杭州: 浙江大学, 2002.
    [19]
    LINDSTRÖM M. Urban land use influences on heavy metal fluxes and surface sediment concentrations of small lakes[J]. Water, Air, and Soil Pollution, 2001, 126(3/4): 363. DOI: 10.1023/A:1005291611702.
    [20]
    BAI L Y, ZENG X B, LI L F, et al. Effects of land use on heavy metal accumulation in soils and sources analysis[J]. Agricultural Sciences in China, 2010, 9(11): 1650. DOI: 10.1016/s1671-2927(09)60262-5.
    [21]
    XIA X H, CHEN X, LIU R M. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2043. DOI: 10.1016/j.jhazmat.2010.12.104.
    [22]
    李晓燕, 陈同斌, 雷梅, 等. 不同土地利用方式下北京城区土壤的重金属累积特征[J]. 环境科学学报, 2010, 30(11): 2285. DOI: 10.13671/j.hjkxxb.2010.11.016.
    [23]
    章立佳. 上海城市土壤重金属空间变异结构和分布特征[D]. 上海: 上海师范大学, 2011.
    [24]
    钟莉莉. 珠江三角洲顺德地区铅的生态环境地球化学特征及其对人群健康的影响分析—兼论铅在表生系统的生态地球化学表现[D]. 广州: 中山大学, 2007.
    [25]
    孙玉艳. 石家庄市机动车尾气污染控制规划研究[D]. 南京: 南京理工大学, 2004.
    [26]
    薛骁. 石家庄市机动车尾气污染现状及其对PM2.5的贡献影响研究[D]. 石家庄: 河北科技大学, 2015.
    [27]
    鲁春霞, 谢高地, 李双成, 等. 青藏铁路沿线土壤重金属的分布规律初探[J]. 生态环境, 2004, 13(4): 546. DOI: 10.16258/j.cnki.1674-5906.2004.04.023.
    [28]
    王桢, 张建强, 渡边泉, 等. 铁路和道路沿线土壤重金属含量及来源解析[J]. 生态环境学报, 2018, 27(2): 364. DOI: 10.16258/j.cnki.1674-5906.2018.02.022.
    [29]
    马建华, 楚纯洁, 李剑, 等. 铁路交通对铁路旁土壤重金属污染的影响—以陇海铁路郑州—圃田段为例[J]. 土壤通报, 2007, 38(1): 128. DOI: 10.19336/j.cnki.trtb.2007.01.029.
    [30]
    METRAK M, CHMIELEWSKA M, SUDNIL-WÓJCIKOWSKA B, et al. Does the function of railway infrastructure determine qualitative and quantitative composition of contaminants (pahs, heavy metals) in soil and plant biomass?[J]. Water, Air & Soil Pollution, 2015, 226(8): 253. DOI: 10.1007/s11270-015-2516-1.
    [31]
    王济, 张浩, 曾希柏, 等. 贵阳市城区路侧土壤重金属分布特征及污染评价[J]. 环境科学研究, 2009, 22(8): 950. DOI: 10.13198/j.res.2009.08.78.wangj.015.
    [32]
    柳云龙, 章立佳, 庄腾飞, 等. " 城郊乡” 梯度下土壤Cu、Zn、Pb含量的空间变异特征[J]. 长江流域资源与环境, 2015, 24(7): 1207. DOI: 10.11870/cjlyzyyhj2015.07.018.
    [33]
    周永锋, 刘兴成, 周艳琳. 肥料中重金属含量及其对干旱灌溉农区玉米吸收累积的影响[J]. 农业环境科学学报, 2006, 25(S2): 503. DOI: 1672-2043(2006)增刊-0503-04.
    [34]
    王起超, 麻壮伟. 某些市售化肥的重金属含量水平及环境风险[J]. 农村生态环境, 2004, 20(2): 62.
    [35]
    王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466.

Catalog

    Article views (2143) PDF downloads (9) Cited by()