• Chinese Science Citation Database (CSCD) Source Journals
  • A Guide to the Core Journals of China
  • Top 100 Sci-Tech Journals of Chinese Universities
  • Chinese Science and Technical Core Journals
  • China Agriculture and Forestry Core Journals (Category A)
Yuwen ZHANG, Xingran LIAN, Yan ZHAO. Effect of Simulated Drought Stress on the Physiological Characteristics of Cerasus cerasoides Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(1): 97-102. DOI: 10.12101/j.issn.1004-390X(n).201711075
Citation: Yuwen ZHANG, Xingran LIAN, Yan ZHAO. Effect of Simulated Drought Stress on the Physiological Characteristics of Cerasus cerasoides Leaves[J]. JOURNAL OF YUNNAN AGRICULTURAL UNIVERSITY(Natural Science), 2019, 34(1): 97-102. DOI: 10.12101/j.issn.1004-390X(n).201711075

Effect of Simulated Drought Stress on the Physiological Characteristics of Cerasus cerasoides Leaves

More Information
  • Received Date: November 28, 2017
  • Revised Date: November 03, 2018
  • Available Online: January 11, 2019
  • Published Date: December 31, 2018
  • Purpose In order to study the adaptability of Cerasus cerasoides under drought stress.
    Method Through simulation drought stress by different polyethylene glycol (PEG-8000) treatments (5%, 10% and 20%), the physiological changes of leaves every 2 days were tested.
    Result The relative conductivity in leaves continued to rise with the increase of PEG content and the prolongation of stress time. The relative conductivity in leaves increased significantly in the severe drought stress (20%) compared with the other two treatments, with a promotion of 189.21% after 8 days (P<0.05). The content of malondialdehyde (MDA) also showed an upward trend in all treatments. The change of MDA in mild drought stress (5%) treatment was relatively slow with an increase of 25.59%, while those in moderate drought stress (10%) and severe drought stress treatments (20%) increased more significantly by 55.78% and 145.25% respectively after 8 days. The content of soluble sugar increased under drought stress, and the increase in mild drought stress was the slowest, rising by 31.26% after 8 days, while that in severe drought stress increased by 87.78% after 8 days. The relative water content (RWC) showed a decrease trend, and in severe drought stress the leaf water content decreased by 41.62% after 8 days, which was much more significant than the other two treatments. Correlation analysis showed that the relative conductivity, MDA content and soluble sugar content were positively correlated, and leaf water content was negatively correlated with conductivity, MDA and soluble sugar.
    Conclusion The physiological changes in the leaves of C. cerassoides indicate that the drought resistance is poor in seedlings.
  • [1]
    荣秀连, 王波, 刘刊, 等. PEG-6000模拟干旱胁迫对冷季型草坪种子萌发特性影响[J]. 北方园艺, 2010(8): 80
    [2]
    尹晗, 李耀辉. 我国西南干旱研究最新进展综述[J]. 干旱气象, 2013(1): 182
    [3]
    鲁松. 干旱胁迫对植物生长及其生理的影响[J]. 江苏林业科技, 2012(4): 51. DOI: 10.3969/j.issn.1001-7380.2012.04.015
    [4]
    王宏哲. 我国城市缺水的原因与对策[J]. 吉林建筑工程学院学报, 2001(2): 33. DOI: 10.3969/j.issn.1009-0185.2001.02.009
    [5]
    RYAN M G. Tree responses to drought[J]. Tree Physiology, 2011, 31(3): 237. DOI: 10.1093/treephys/tpr022.
    [6]
    何磊. 干旱区园林绿化设计中的节水措施[J]. 绿化与生活, 2013(12): 23
    [7]
    洪震, 练发良, 刘术新, 等. 3种乡土园林地被植物对干旱胁迫的生理响应[J]. 浙江农林大学学报, 2016(4): 636
    [8]
    段晓梅, 王自辉, 樊国盛. 云南冬樱花的群落特征及地理分布[J]. 南京林业大学学报(自然科学版), 2004, 28(6): 83. DOI: 10.3969/j.issn.1000-2006.2004.06.022
    [9]
    关文灵. 冬日里的浪漫花木—冬樱花[J]. 云南林业, 2006(6): 27
    [10]
    杨明艳, 李兴明, 杨发军, 等. 冬樱花嫁接繁殖试验[J]. 农业研究与应用, 2012(2): 17. DOI: 10.3969/j.issn.2095-0764.2012.02.006
    [11]
    杨文良, 关文灵, 毛昆明, 等. 冬樱花不同时期播种试验[J]. 中国园艺文摘, 2010(12): 7. DOI: 10.3969/j.issn.1672-0873.2010.12.003
    [12]
    和凤美, 朱永平, 杨晓红, 等. 冬樱花愈伤组织诱导和抑制褐化初探[J]. 中国农学通报, 2010(12): 130
    [13]
    杨明艳, 李兴明, 杨发军, 等. 冬樱花扦插生根处理研究[J]. 热带农业科学, 2011(12): 20. DOI: 10.3969/j.issn.1009-2196.2011.12.006
    [14]
    段晓梅. 冬樱花扦插繁殖研究[J]. 西南林学院学报, 2003, 23(1): 43. DOI: 10.3969/j.issn.2095-1914.2003.01.012
    [15]
    谢凤云, 戴明仲, 张飞, 等. 冬樱花的引种栽培及其在园林中的应用[J]. 现代农业科技, 2017(3): 140. DOI: 10.3969/j.issn.1007-5739.2017.03.095
    [16]
    赵大克, 郑丽. 云南冬樱花及其在园林中的应用[J]. 云南农业大学学报(自然科学), 2009, 24(5): 778. DOI: 10.3969/j.issn.1004-390X.2009.05.027
    [17]
    陈剑英, 董琼, 杨超本. 冬樱花生态地理学研究[J]. 西南林学院学报, 1999, 19(1): 1. DOI: 10.3969/j.issn.2095-1914.1999.01.001
    [18]
    李丽, 范眸天, 杨德, 等. 昆明地区冬樱花开花生物学习性的初步研究[J]. 云南农业大学学报, 2005, 20(3): 448. DOI: 10.3969/j.issn.1004-390X.2005.03.034
    [19]
    孙存华, 李扬, 贺鸿雁, 等. PEG6000渗透胁迫对藜幼苗叶片渗透调节物质的影响(英文)[J]. Agricultural Science & Technology, 2007(Z1): 20. DOI: 10.3969/j.issn.1001-3601.2007.z1.006
    [20]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [21]
    郝再彬, 苍晶, 徐仲. 植物生理实验[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004.
    [22]
    孙程旭, 刘立云, 李荣生, 等. PEG处理对蛇皮果幼苗的生理响应及酶变化研究[J]. 云南农业大学学报(自然科学), 2011, 26(5): 673. DOI: 10.3969/j.issn.1004-390X(n).2011.05.017
    [23]
    吴庆贵, 杨敬天, 邹利娟, 等. 珙桐幼苗生理生态特性对土壤干旱胁迫的响应[J]. 江苏农业科学, 2014, 42(2): 119. DOI: 10.3969/j.issn.1002-1302.2014.02.040
    [24]
    崔江慧, 李霄, 常金华. PEG模拟干旱胁迫对高粱幼苗生理特性的影响[J]. 中国农学通报, 2011, 27(9): 160
    [25]
    苏寒之, 金建邦, 祝遵凌. 干旱胁迫对北美红栎幼苗生理特性的影响[J]. 东北林业大学学报, 2014(8): 34. DOI: 10.3969/j.issn.1000-5382.2014.08.008
    [26]
    丁菲, 杨帆, 杜天真. 干旱胁迫对构树幼苗抗氧化酶活性变化的影响[J]. 江西农业大学学报, 2008, 30(4): 680. DOI: 10.3969/j.issn.1000-2286.2008.04.022
    [27]
    李书平. 福建山樱花和日本樱花对干旱胁迫的生理响应研究[D]. 福州: 福建农林大学, 2014.
    [28]
    姜英淑, 陈书明, 王秋玉, 等. 干旱胁迫对2个欧李种源生理特征的影响[J]. 林业科学, 2009, 45(6): 6. DOI: 10.3321/j.issn:1001-7488.2009.06.002
    [29]
    张尧. 梭梭幼苗干旱死亡过程中的水力结构变化与碳分配动态[D]. 北京: 中国科学院大学, 2016.
    [30]
    郭春芳, 孙云. 干旱胁迫下植物的渗透调节及脯氨酸代谢研究进展[J]. 福建教育学院学报, 2015, 16(1): 114. DOI: 10.3969/j.issn.1673-9884.2015.01.032
    [31]
    刘忠霞. 干旱胁迫下苹果树苗光合、耗水特性及抗旱性研究[D]. 咸阳: 西北农林科技大学, 2011.
    [32]
    蒲光兰, 袁大刚, 胡学华, 等. 土壤干旱胁迫对3个杏树品种生理生化特性的影响[J]. 浙江林学院学报, 2005, 22(4): 375. DOI: 10.3969/j.issn.2095-0756.2005.04.004
    [33]
    胡学华. 李、桃、杏和梨四种经济树木对干旱胁迫的生理响应及其抗旱性的研究[D]. 雅安: 四川农业大学, 2005.
    [34]
    赵福庚, 何龙飞, 罗庆云. 植物逆境生理生态学[M]. 北京: 化学工业出版社, 2004.
    [35]
    唐承财, 钟全林, 王健. 林木抗旱生理研究进展[J]. 世界林业研究, 2008(1): 20
    [36]
    段胜芝, 马士祝, 牟凤娟. 裸子植物水分特征与抗旱机理研究进展[J]. 陕西林业科技, 2016(3): 83. DOI: 10.3969/j.issn.1001-2117.2016.03.022
    [37]
    李云飞. 土壤干旱胁迫对李属彩叶植物抗旱生理及叶色的影响[D]. 保定: 河北农业大学, 2008.
    [38]
    孙宗国. PEG-6000模拟干旱胁迫下裸果木幼苗的生理响应[J]. 甘肃农业科技, 2014(12): 41. DOI: 10.3969/j.issn.1001-1463.2014.12.015
    [39]
    仇云峰, 李亚光, 李青山. 干旱胁迫对小叶杨幼苗生长的影响[J]. 水土保持通报, 2015, 35(2): 42
  • Cited by

    Periodical cited type(3)

    1. 侯雨琪,郑伟,徐晓丹. 高盆樱桃资源与园林应用研究进展. 园林. 2022(05): 142-147 .
    2. 朱军,叶小玲,胡晓敏. 新优观赏花木高盆樱桃研究进展. 广东园林. 2021(01): 69-72 .
    3. 杨娇娇,熊睿雨,邢祎,张彦妮. PEG模拟干旱胁迫对大花金鸡菊、桂圆菊和赛菊芋种子萌发的影响. 种子. 2020(02): 88-90+95 .

    Other cited types(10)

Catalog

    Article views (2051) PDF downloads (21) Cited by(13)